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Abstract

This paper takes the reader into the field of reconstructing a missing distal region of

a 3D humerus model, partially reconstructed from CT scans, using a mean model.

As clinicians utilize modern medical imaging methods, some of them utilize X-rays,

which are deemed to be harmful for the patient. Therefore, CT scans are usually

limited to only the region necessary for the diagnosis. On the other hand, the clin-

icians need to gather as much imaging data as possible to enable exploring new

possibilities, for instance biomechanical analysis, patient specific bone reconstruc-

tion surgery planning, and personalized implant design. The goal of this thesis is to

propose a new approach to reconstructing the full 3D surface model of a patient-

specific humerus bone based on a partial model rendered from a typical shoulder

CT scan showing only the proximal humerus.

To achieve this goal, this paper analyses existing research on methods for re-

constructing 3D surface models with focus on (humerus) bone models. Based on

this analysis, the paper proposes a new pipeline utilizing a mean humerus model

alongside the Bayesian Coherent Point Drift for the model reconstruction and the

Random Sample Consensus combined with Iterative Closest Points algorithms for

model pre-alignment.

The proposed pipeline is implemented in form of a module into the 3D Slicer

application and used for demonstrating achieved results. The module is tailored

specifically for the humerus. However, it is not strictly limited in terms of use cases;

the algorithm parameters can easily be adjusted for other studies.

Abstrakt

Tato diplomová práce uvádí čtenáře do problematiky rekonstrukce chybějící distální

části 3D modelu pažní kosti, který byl částečně zrekonstruován z CT snímků, za

využití statistického vzorového modelu.

Lékaři běžně využívají moderní snímkovací technologie, z nichž část využívá

principy rentgenového záření, které je ale považováno za škodlivé pro člověka.

Z toho důvodu jsou běžně CT snímky omezeny pouze na oblast nezbytnou pro

stanovení diagnózy.Na druhou stranu, lékaři potřebují shromáždit co nejvíce snímků

pro umožnění zkoumání nových možností a metod v oblastech biomechanické

analýzy, plánování chirurgické rekonstrukce pacientovy paže či tvorby implantátů

pro daného pacienta.

Cílem této práce je navrhnout nový postup pro rekonstrukci kompletního 3D
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povrchového modelu pacientovy pažní kosti, jehož základem je její částečný model,

který byl zpětně zrekonstruován z CT snímků ramene, na kterých se je vyobrazena

pouze její distální část.

K dosažení tohoto cíle tato práce analyzuje stávající výzkum metod pro rekon-

strukci 3D povrchových modelů, se zaměřením na modely (pažní) kosti. Na zák-

ladě této analýzy je navržen nový postup rekonstrukce využívající model statistický

model pažní kosti společně s metodu Bayesian Coherent Point Drift pro rekonstrukci
modelu a metodu Random Sample Consensus v kombinaci s algoritmem Iterative
Closest Points pro správné předzarovnání a natočení modelů v rámci dané scény.

Navržený postup je implementován formou modulu do aplikace 3D Slicer a

slouží k demonstraci dosažených výsledků. Modul je přizpůsoben speciálně pro

pažní kost, z hlediska využití však není striktně omezen, jelikož lze parametry využí-

vaných metod lze snadno upravit.

Keywords

3D models • Slicer • Python • Mesh reconstruction • Bone reconstruction • Surface

models
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Intro 1
In the fields of medical imaging and orthopedics, advancements in technology have

revolutionized the way we approach diagnostics, treatment planning and surgical

interventions. One significant area of progress is the creation of patient-specific

skeletal models derived from their medical imaging data. These models serve as

invaluable tools that bridge the gap between medical imaging and clinical practice,

enabling healthcare professionals to gain enhanced insights into anatomical struc-

tures and customize treatments to the specific needs of individual patients.

Among various bones in the human body, the humerus bone holds a particular
significance due to allowing for a wide variety of movement for our arms. While the

humerus bone can be considered a relatively strong bone, it can be easily prone to

substantial damage, mainly from serious traumatic events such as car accidents and

high falls. If we combine this fact with the underlying data of a high frequency of

recorded fractures [Mel14] and simpler physical geometry (relatively to other human

bones), the humerus presents a perfect candidate for the patient-specific skeletal

modelling research. Furthermore, routine shoulder CT scans typically only show the

proximal third of the humerus, necessitating reconstruction of the distal region for

the creation of patient-specific models. By accurately reconstructing surface models

1
of the humerus bone from medical imaging data, clinicians and researchers will

be enabled to explore new possibilities including biomechanical analyses, patient

specific bone reconstruction surgery planning, and personalized implant design.

Medical imaging provides the foundation for constructing personalized anatom-

ical models. Technologies used for this task are often divided into several main

categories:

1. Magnetic resonance imaging (MRI)

2. Sonography

3. and Radiography

1
a 3D model representing a real object constructed as a mesh of geometrical primitives without

a solid volume (more details in 1.2.2)
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1 Intro

Figure 1.1: Example of a model of the humerus bone

In reality, there are many other methods for medical imaging, but for the pur-

poses of this thesis, only the ones enumerated above are essential for understanding

core concepts of this thesis.

1.1 Medical Imaging Methods

This section briefly describes each type of medical imaging method (as enumerated

in section 1). An overview of all of commonly used imaging methods (in relation to

the time of writing) is available at the end of this section in Table 1.1.

4



1.1.1 Magnetic Resonance Imaging

1.1.1 Magnetic Resonance Imaging

Magnetic resonance imaging (abbrv. MRI) is a technology utilizing two physical

principles: magnetic fields and radio waves [BB]. It is a non-invasive imaging tech-

nology that produces 3D detailed images of the monitored regions of the human

body. It is mostly used to visualize soft tissues, organs, and structures that might

not be as clearly visible as with other imaging methods. The principle of an MRI

scanner [BB] is quite ingenious in terms of the physics behind it as we will see in the

following description.

An MRI scanner (Figures 1.3 and 1.4) always contains a powerful magnet pro-

ducing a strong magnetic field. This magnetic field is so strong that it physically

forces the protons present in the human body to align with the direction of the field.

Inside the tubular chamber of a scanner, a patient is surrounded by radio-frequency

coils (abbrv. RFC) which produce radio-frequency waves. These waves are used to
spin the protons out of an equilibrium1

, forcing them to misalign with the magnetic

field. As soon as the radio-frequency coils stop producing their signal, the protons

realign back with the direction of the magnetic field. However, this process is not

instant and requires a significant amount of energy that is then released by each

proton. Based on the type of tissue that the proton is present in, the amount of

energy and time to fully realign varies substantially. By monitoring these properties,

the differences are depicted using a greyscale with different levels of contrast in the

produced image (Figure 1.2).

The MRI is particularly well suited for imaging soft tissues due to their great

variance in chemical structure, thus resulting in great variance in the proton be-

haviour. One of the most significant advantages of the MRI is that it does not utilize

any kind of ionizing radiation of X-rays compared to other methods covered in the

following sections, therefore using this method does not introduce any health risks.

The downside of using an MRI scanner is its strong magnetic field which pro-

hibits presence of anymetal object inside or outside the patient, as well as in the near

distance of the machine. This is usually a problem when any kind of metal implant

such as pacemakers, defibrillators, insulin-pumps, or metal joint implants is present

in a patient’s body. The scanning process can be substantially longer compared to

other commonly used imaging methods. Following, the scanning process itself is

usually more expensive when compared to other imaging methods.

Overall, theMRImethod is a great visualizing tool for the healthcare profession-

als, but is not universal. Nevertheless, it is often used as one of the first-line imaging

procedure for pinning down the exact location of a problem.

1
a state in which opposing forces or influences are balanced
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1 Intro

Figure 1.2: An example of a humerus bone scanned using theMRImethod. (a) depicts

a humerus with a cartilaginous tumor, (b) depicts this condition in an earlier stage.

Courtesy of [Dec+21] (shared under the CC-BY 4.0 DEED license)
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1.1.2 Sonography

Figure 1.3: Example of a real MRI scanner. Courtesy of MART PRODUCTION

(freely available under the Pexels licence)

1.1.2 Sonography
Sonography describes a family ofmethods utilizingultrasoundwaves in the imaging

process. The research concerning sonography can be dated as far back as the 17th

century to Lazaro Spallanzi [Bor23] and his research about bat navigation [D20]. The

term ultrasound describes sound waves of higher frequency, typically in the range

from 1 MHz to 20 MHz. For comparison, the human ear can capture frequencies

generally between 20 Hz to 20kHz, which is an order of magnitude lower. The

principle of using an ultrasound in the field of medical imaging is described in

[Bor23], section Basic Ultrasound Physics, as following:
“Modern-day ultrasounds utilize piezoelectricity technology to convert electricity

to sound waves and convert sound waves back into electricity through the use of lead
zirconate titanate (PZT), which are human-made crystals (also called ceramic). The
vibration occurs as these crystals are electrically stimulated, which produce longitudinal
sound waves in the previously described frequency, thus producing ultrasound waves.”

When such waves are produced, they are sent in the direction from the sono-

graph to the examined section of the patient. As they hit the patient, their energy is

partially absorbed and the rest of the wave “bounces” off back to the sonograph, thus

vibrating the PZT crystals, which convert it back to the electric signal. The amount

of energy that is returned back depends on the type of the material and its density.

7
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1 Intro

Figure 1.4: Cross-section of an MRI scanner. Courtesy of [HH13] (shared under

BGS licence for non-commercial use)

Based on that knowledge, we are able to determine which type of tissue has been

encountered as different tissues absorb different amounts of the waves’ energy.

Sonography is a non-invasive type of imaging, which is one of its significant

advantages. However, the issue with this method lies within the produced images as

their overall resolution is heavily dependant on the skills of the sonographer. When

setting up for this type of imaging, a certain amount of configuration is available,

mainly concerning the characteristics of the sound waves. Those settings play an

important role in determining the overall quality of the images. When the sono-

graph is not properly operated, a high number of undesirable image artifacts may

be present in the results.

Overall, sonography is a great non-invasive alternative to other imaging meth-

ods. Nonetheless, based on the example of results shown in Figure 1.5, the produced

images present a lot of noise compared to other mentioned methods (even when

operated properly), which makes them not a strong candidate for our purposes.

8
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1.1.3 Radiography

Figure 1.5: An example output of the sonography imaging method. Courtesy of

[Pat23] (shared under the Radiopaedia licence)

1.1.3 Radiography

Radiography is a family of methods which use an X-Ray radiation (commonly re-

ferred to as Röentgen radiation) in the imaging process [FA]. An X-ray is a type
of electromagnetic radiation which was discovered in 1895 by a German physicist

Wilhelm Röentgen. The radiation is being utilized as a ray of high-energy photons,

which resolves into a light beam with of a low wavelength, thus making it invisible

for a human eye. When such beam passes through a soft human tissue, not much of

it is absorbed since human tissues usually consist of very small atoms. On the other

hand, structures like bones consist of much larger atoms, therefore they are capable

of absorbing way more of the beam’s energy.

The X-Ray machine (Figure 1.6) contains, amongst other parts, a pair of elec-

trodes (cathode and tungsten anode) which are a crucial part of machine. The cath-

ode is heated to release the electrons, leading to their attraction to the anode. Due

to a high difference between voltages on the electrode pair, the electrons travel with

extreme force. After the electron collides with the anode, it releases a highly ener-

gized particle in a form of a X-ray photon. Notably, when a photon is released from

the electron, it disperses some amount of energy in a form of heat. To mitigate this

effect, the anode is attached to a rotor which spins the anode in order to prevent

9
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1 Intro

Figure 1.6: An example of the insides of an X-ray machine. Courtesy of [Har24]

(shared freely for educational purposes)

overheating (and possibly meltdown) of the material. Naturally, these photons could

be emitted throughout the whole surface of the machine but its lead shielding mit-

igates this effect, therefore the photons are forced to leave the space only through

the designated area. Once the beam passes through a patient, a camera is present on

the opposite side catching the beam of light, similarly to an ordinary camera. Based

on the amount of energy caught by the camera, an inverted brightness scale (i.e. the

parts which absorbed the most amount of the X-ray are shown as the brightest) is

used to produce an image.

As noted earlier, soft tissues in a body will be shown only slightly, if at all. Gen-

eral muscle and fat areas are still visible, however it is quite difficult to distinguish

between them.On the other hand, inmodernmedicine it is often desirable to include

them all in the image (one of the reasons might be to reduce the needed amount

of different imaging to help diagnose a patient). For this, clinicians usually need to

use a special contrast media infused inside the body of a patient which help with

10



1.1.4 Computed Tomography

absorbing as much of the X-ray particles as possible.

To address the most important issue: Are X-rays a health risk? In a short answer

yes, though a quick explanation will present an important context to the reader. As

mentioned, X-rays are a form of radiation. By definition, this presents a handful of

possible risks, where the most significant is the likely increase of cancer occurrence

due to the radiation overexposure to the human body.When cells are exposed to this

type of radiation, several things happen [ZH]. First of all, the molecular structure of

each exposed cell has increased risk of structural damage. This damage then could

possibly lead to unpredictable cell mutations or possibly cell deaths (also called

necrosis), which, potentially, could lead to conditions such as hair loss, skin burns,

infertility and more. The amount of damage usually correlates to the amount of

exposed radiation a human body has suffered in practice, but that is yet to be fully

proven due to a numerous amount of unknowns in play. Based to the possible side

effects the X-ray radiation might have on the human body, it is only desirable to

limit the amount of radiation a human body is exposed to as much as possible.

1.1.4 Computed Tomography
Computed tomography (abbrv. CT), is an imaging technique closely related to the

X-ray imaging. It was invented in 1972 by Sir Godfrey Hounsfield [Her23] and has

been an important tool in clinical diagnosis to this day.

CT scanning process utilizes a rotating X-ray tube coupled with X-ray detec-

tors placed in various angles (Figure 1.7). During the scanning procedure, the tube

“shoots” out a narrow X-ray beam through the patient. On the opposite side of tube,

the amount of energy of the beam reduced by the amount that has been absorbed

by the scanned spot, is detected by the detectors. The measured amount is then sent

to a computer which attached to the scanner. After the tube performs a full rota-

tion, all of the gathered measurements are then processed by this computer using a

sophisticated reconstruction algorithm, thus creating a single image (a “slice”). All

of these steps are repeated until the desired amount of images is gathered.

This principle has the advantage thatwhen using aCT,we are able to gathermore

information in form higher resolution images of the scanned area from different

angles. Also, thanks to having scans of the examined area from different angles we’re

able to reconstruct it in a 3D virtual space. However, this process does not mitigate

the effects of using an X-ray but quite the opposite, actually. The amount of radiation

that the patient is exposed to is significantly higher and can get up to more than

10x [Pub21] the average dosage of a simple X-ray image. Due to this unfortunate

property, the CT imaging is limited to a specific region for the examination, which

restricts the amount of data to be gathered. An example how a CT scan result might

look like can be found in Figure 1.8.
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1 Intro

Figure 1.7: Image of the insides of a CT scanner with short descriptions. Courtesy

of HealthJade (shared freely for educational purposes)

Figure 1.8: Example of how a CT scan and its 3D reconstructed result might look

like

12
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1.1.4 Computed Tomography

Table 1.1: Overview of commonly used medical imaging meth-

ods. Source: Healthcare Industry BW

Beginning of Table

Method Principle Description Main areas of
application

X-ray image (ra-

diography)

X-radiation (im-

age display on

film material,

mostly digital)

Imaging of inner

layers with or

without contrast

agent

Radiology,

surgery, or-

thopaedics,

dentistry

Fluoroscopy X-radiation

(dynamic X-ray

images on moni-

tors with image

intensifiers)

Imaging of mov-

ing organs, usu-

ally with contrast

agent

Gastrointestinal

tract, lungs,

heart (also for

pacemaker posi-

tioning), venous

vessels

Computed

tomography (CT)

X-radiation (3D

display with

the aid of a

gantry(rotating

scanner))

3D image genera-

tion through com-

puter calculation

of the individual

image signals

Radiology, oncol-

ogy

Magnetic reso-

nance imaging

(MRI)

Electrical signals

generated by

magnetic fields

of the hydrogen

atoms in the

tissue

Copmuter-

generated thin-

slice images of

the soft tissues

with or without

contrast agent

Cardiology, on-

cology (CNS,

internal organs,

cardiovascular

diseases)

Angiography (MR

angiography, MR-

A; CT angiogra-

phy, CT-A)

Imaging of the

blood and lymph

vessels by MRI or

CT

Mostly with con-

trast agents or flu-

orescent dyes

Stroke, heart

attack, varicose

veins, macular

degeneration of

the eye

Sonography

(ultrasound)

Reflection of

ultrasound waves

on organs and

tissues

Representation of

all externally ac-

cessible fluid and

soft structures

All areas. One of

themost common

imaging methods
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1 Intro

Continuation of Table

Method Principle Description Main areas of
application

Colour-coded

Doppler sonogra-

phy (FKDS)

Sonography

that exploits

the Doppler

effect created by

flowing liquids

Representation of

the flow direction

and velocity of ar-

terial and venous

blood

Angiology, cardi-

ology

Scintigraphy 𝛾-radiation after

incorporation

of a short-lived

radionuclide

(“tracer”)

Detection with a

gamma camera;

colour-coded

intensity display

(scintigram)

Endocrinology,

pneumology, on-

cology (especially

screening for

bone metastases)

Single pho-

ton emission

computed tomog-

raphy (SPECT)

Like scintigraphy

with 𝛾-ray tracet,

but 3D detection

via rotating colli-

mators

2D or 3D sciti-

grams computer

calculated from

individual images

with intensity

coding

Cardiology,

oncology (rep-

resentation

of metabolic

intensity)

Positron emission

tomography

(PET)

Simultaneous

detection of

two 𝛾-photons

emitted during

the 𝛽+-decay of

the tracer

Imaging of

metabolic func-

tions in conjunc-

tion with CT or

MRT

Oncology, neurol-

ogy, cardiology

Endoscopy Fibre optics in

visible light with

camera (also

video)

Visualisation of

hollow organs

and body cavities

Gastroenterology,

surgery, or-

thopaedics,

pneumology

Electrical

impedance

tomography (EIT)

Measurement of

electrical conduc-

tivity based on the

free ions in the tis-

sue

Representation of

the condition (a-

EIT) or function

(f-EIT)

Pneumology, neu-

rology, mammog-

raphy, cardiology

Thermography Measurement of

infrared radiation

with thermal

imaging camera

Visualization of

inflammatory

lesions under the

skin

Sports medicine
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1.2 Patient Model Reconstruction

1.2 Patient Model Reconstruction
When gathering imaging data about a patient created by conventional methods

(section 1.1), they are usually in formof a 2D slice or a set of such. Being able to create

3D models of the set of slices is important as they can provide more comprehensive

overview of the anatomy (for example for clinical diagnosis of complex fractures), as

well as facilitating 3D anatomical and biomechanical analysis.Methods for achieving

this task ultimately share the same goal - create a 3D object out of the provided set

of images, though their principles vary significantly.

1.2.1 CT Image Reconstruction
Figure 1.8 depicts two types of outputs - typical CT reconstructed images and their

3D model representation. Those are not the data gathered from the X-ray detectors

themselves (based on the principle discussed in section 1.1.4). To create 3D models

out of the data from the CT detector, we first need to reconstruct the image slices out

of the raw sensor values for which various methods and algorithms were developed

throughout time.

The first of these methods was discovered in a feasibility study performed by

the Czech-Austrian mathematician Johann Karl August Radon. His research On
the Determination of Functions From Their Integral Values Along Certain Manifolds
[Rad86] was a breakthrough for modern CT image processing we use today. His

findings, mainly the Radon transformmethod, forms a solid foundation for many

modern image reconstruction methods today.

The idea of the Radon transform is the following. Let there be a source 2D

image represented by a two-dimensional pixel matrix. Let there be a function 𝑓 (𝑥) =
𝑓 (𝑥, 𝑦) that satisfies the three regularity conditions [Rad86]:

1. 𝑓 (𝑥) is continuous,

2. the double integral

∫ ∫ |𝑓 (𝑥) |√
𝑥2+𝑦2

𝑑𝑥𝑑𝑦,

over the whole plane converges,

3. for any arbitrary point [x, y] it holds that:

lim𝑟−>∞
∫
2𝜋

0
𝑓 (𝑥 + 𝑟𝑐𝑜𝑠𝜙, 𝑦 + 𝑟𝑠𝑖𝑛𝜙)𝑑𝜙 = 0
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4. Radon transform is then defined on the space of straight lines 𝐿 ⊂ 𝑅2
as

following:

𝑅𝑓 (𝐿) =
∫
𝐿
𝑓 (𝑥) |𝑑𝑥 |

In other words, an image can be described by a line integral over each parallel

line sent through the image. This fascinating observation strongly correlates with

the idea of forward projection, which is a process of sending a set of parallel rays
through the patient’s body.

The concept of Radon transform is fully applicable for the forward projection.

As the projection plane rotates (analogous to the rotating CT scanner), the output

of the projection create a sinogram (as depicted in Figure 1.9, part A).

After the gathering of the data, the next steps is the tomography reconstruc-
tion. To this day, there are many of different reconstruction techniques, such as:

• Analytical reconstruction

• Iterative reconstruction

• Filtered back projection

• Deep learning reconstruction

• and others . . .

For the purposes of this thesis, the filtered back projection principle will

suffice as an explanation of the idea behind tomography image reconstruction. The

filtering part is introduced to sharpen the output image, because the output of the

back projection is too blurry due to the initial blurriness of the sinogram (as depicted

in Figure 1.9, part B). As the name suggests, the back projection principle is an

inverse operation to the forward projection, which has just been covered.

At this point, we have reproduced a single slice of the scanned object. To recon-

struct a 3D model of the object, the CT needs to produce higher number of scans

throughout the whole part, which can be achieved by translating the scanner along

one axis.

1.2.2 3D Model Rendering
When the 2D CT image slices are gathered, the final step of the reconstruction

process is to render the 3D representation. To achieve that, the slices need to undergo

several image processing methods to gather enough data about the object that needs

to be rendered, since the scans usually contain other nearby parts of the patients

body.

16



1.2.2 3D Model Rendering

Figure 1.9: Pipeline of a CT image reconstruction. Courtesy of [Wei+20] (shared

under the CC BY 4.0 DEED licence)

First, we need to perform an object segmentation, i.e. extracting parts of the
source image that are relevant. This is usually done automatically by using an im-

age segmentation algorithm, sometimes with manual input from a clinician or re-

searcher to improve the accuracy as much as possible. Since the source scans are

represented in a grayscale color space, we can also apply a global threshold to

each pixel to filter out the noise. The thresholding can be also used for separating

structures of different densities for further segmentation processes. The output of

this step would be a set of images, each corresponding to its source scan, where only

the relevant objects are showed.

Next, we need to convert each segmented image to a 3D surface model. This

conversion can be achieved by a number of methods, one of which is the marching

cubes algorithm [FLJ21], [LC87]. As this method is quite complicated, its details can

be found in the cited resources. For the purposes of this thesis, only the output of

this method is relevant, which is a triangular surface mesh model. As mentioned

in section 1, the term surface model can be defined as a “3D model representing a

real object constructed as a mesh of geometrical primitives without a solid volume”.

Geometrical primitives that are used for constructing such meshes are usually some

type of polygons. Every polygon consists of a set of vertices, faces and edges.
Based on the type of the polygons, we can define the type of the mesh itself. For

instance, a triangle mesh (Figures 1.10 and 1.11) would consist of polygons where

each polygon would have faces represented as triangles.

At this stage of the pipeline, the last step remaining is to visualize the object.

17

https://creativecommons.org/licenses/by/4.0/
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Figure 1.10: Example of a humeral head as a surface model (left) and its correspond-

ing wireframe (right) consisting only of triangles

Again, many different visualization tools exist, however due to other supporting

aspects, we will be using the 3D Slicer (more details in chapter 3.1).
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1.2.2 3D Model Rendering

Figure 1.11: Visualization of different mesh resolution (density)
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Humerus Surface
Model
Reconstruction
Analysis

2

In this chapter, we will dive into possibilities of reconstructing missing distal re-
gions (depicted in Figure 1.1) of the incomplete, patient-specific humerus surface

model with the use of a statistical humerus surface model.

2.1 Statistical Humerus Surface Model
As noted earlier, to reduce the amount of radiation a patient is exposed to, shoulder

scans are often incomplete; the resulting surface models of the humerus are often

only showing the proximal one third. Without any further information, it would be

impossible to know how to generate the missing regions. To solve this problem, we

need some set of additional information, based on which we will be able to generate

the missing distal regions of the surface models. One way to provide such informa-

tion would be to use a second, completemodel representing a humerus bone. It is

very important to note here that this model must be statistically representative
to properly capture the “average” anatomy of the humerus bone.

There are multiple ways to gather such a model. First of them is to acquire

one that is publicly available. This is arguably the easiest solution, although low

availability (if any) is a valid concern. What can be considered as even more signifi-

cant drawback of this approach is the question whether random, publicly available,

model is representative enough in terms of the anatomical features of the humerus.

The second way would be to gather enough CT scans of the humerus from a

set of patients that would be willing to share their scans with a third party. As the

CT machines are available only at hospitals or a clinician office, it is very difficult to

gain access to it. Also, gathering enough CT images for a generic model could get

quite expensive, so this approach is often skipped.
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2 Humerus Surface Model Reconstruction Analysis

The third option would be to borrow data from existing studies and create the

statistical model yourself, which is the approach that has been chosen for gathering

the dataset for this thesis. The dataset and its contents are discussed in section 3.2.

2.1.1 Statistical Shape Modelling
For creating a statistical model we can use the statistical shape modelling ap-

proach (abbrv. SSM) [Amb+19]. As the name suggests, the goal is to create a statisti-

cal model by calculating amean template throughout the provided set of aligned
meshes. Hereafter, we will refer to this model as themean model.

Before we are able to create this model, we need to align all of the source meshes.

In a 3D space, each model relative to another can be either translated, rotated or a

combination of them. For the scale aspect, the scale of the models corresponds 1:1

to the source scans and real life size.

As shown in Figure 1.1, each humerus has its proximal and distal sections.
These parts are essential due to their natural differences, by which we can easily

determine the proper orientation in comparison to each other. For each mesh, we

used landmarking, in other words placing marks on a selected subset of recog-
nizable anatomical features of the humerus. Some of these points are labeled in

Figure 2.1.

Landmarking. For the landmarking, we have three options: either do it manually,

which is applicable only if the number of meshes is fairly small, or use one of the

available automatic landmarking tools or combination of both. Each have their

respective advantages and disadvantages - the manual approach can be more precise

with the price of more manual labour, in comparison to using an automatic tool,

which does ease up the amount of work significantly, although the precision of

the landmarks can be non-negligible. For this analysis, we initially generated the

landmarks using an automatic tool (details in section 3.3) and thenmanually checked

these landmarks and adjusted any inaccuracies as needed - such inaccuracies were

always slight, in the range of a few millimeters.

Mesh alignment process. With the landmarks created, we can proceed to themesh

alignment process. For this task, many methods exist which can be categorized into

two main categories: non-rigid and rigid transformation methods. Methods in the

first category allow for the source model deformation in terms of shape or size,

whereas in the latter the size and shape remain preserved. Usually, the for the rigid
type of alignment, rotation and translation transformation are applied to each point
of the meshes uniformly. In the non-rigid category, more affine transformations

such as scaling or shear mapping methods are utilized. In this stage, we do not want
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2.1.1 Statistical Shape Modelling

Figure 2.1: Example of a male model from the dataset A with (right) and without

(left) some of the landmarks visible (right, pink points). Landmark legend: gt - greater
tubercle, lt - lesser tubercle, hh - humeral head center,mn - medial anatomical neck,

pc - posterior capitulum, pt - posterior trochlea, dt - distal trochlea, me - medial

epicondyle
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2 Humerus Surface Model Reconstruction Analysis

Figure 2.2: Set of male models from the dataset A before (left) and after (right) the

mesh alignment process

to change the shape of the models at all, therefore we are limited here only to rigid
alignment methods (more details in section 3.3.2). A possible output of this step is

depicted in Figure 2.2.

Point correspondence analysis. After all of the meshes are aligned, the next step

is usually to calculate the point-point correspondence. A point correspondence

is generally a very difficult task to solve with various approaches (e.g. correlation-

based or feature-based). However since we have aligned the models beforehand, it

is possible to take a more simpler approach to this problem. The core idea is that

thanks to the pre-alignment of the models, there’s a very high chance that the corre-

sponding points will be relatively close to each other. Details of the implementation

are discussed section 3.3.2.

Meanmeshmodel generation. At this stage, all of the models are properly aligned

andwe have calculated all of the point correspondences. Let us continue to themean

mesh generation. The process of generating the mean model can be described as

following:
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2.2 Humerus Surface Model Reconstruction

1. Let us have a source mesh model 𝐴 and a set of aligned models 𝐵1...𝐵𝑛 of size

𝑁 , point 𝑎 ∈ 𝐴 and its corresponding set of points 𝑏𝑖 ∈ 𝐵𝑖,where 𝑖 ∈< 1;𝑁 >,

2. Calculate the mean position 𝑀 of points 𝑏1...𝑏𝑛,

3. Move 𝑎 to the newly calculated position 𝑀,

4. Repeat for each 𝑎 ∈ 𝐴.

2.2 Humerus Surface Model
Reconstruction

At this stage,we have twomodels available for use - the incomplete patient’s humerus

model and the mean humerus model. The question now is how can we utilize

the mean model in order to reconstruct the missing distal region of the patient’s

humerus model?

To be able to evaluate different methods that are commonly used, let us first

break it down the core of the problem. The humerus, as any other bone, is defined

by its real anatomical properties [Pol+17]. These properties are different for the
its proximal head, shaft and the distal end. They give a physical boundary, in which

the generated model is deemed possible to exist. This means that the missing region

needs to abide to its physical template in terms of the general shape, which means

that the methods used for this case need to take a general shape into account for the

reconstruction.

The mean model will be used as the anatomical template, based on which the

missing region of the humerus will be reconstructed. The boundaries are virtually

impossible to be fully quantified, since the humerus can vary significantly through-

out the population [Pol+17]. However, by capturing the anatomical variation in a

form of the statistical shape model of a population, we can get a better idea of the

overall feasible shape space that a humerus is able to occupy. It is important to keep

in mind that the mean model captures only the anatomical variation of the source

dataset which is the reason why we want as representative dataset as possible (more

details in section 3.2). For the purposes of the thesis, manual measurements and

visual checks will be performed by qualified individual(s) in order to determine the

quality of the reconstruction.

The main idea of utilizing the template is to find (point to point) mapping be-

tween the source (mean model) and the target (incomplete model) - a process called

point cloud registration (recall section 2.1.1 where we were trying to find the

point-point correspondence). If we are able to find this mapping, we would be able

to determine the se of transformations to perform on the source proximal part in
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2 Humerus Surface Model Reconstruction Analysis

order to match the target proximal part as closely as possible. It is important to

note here that this set of transformation cannot be applied to the rest of the source

model because it would end up disproportionally deformed due to the lack of detail

of the overall morphology of the target since it was determined just from the avail-

able proximal part. Arguably, the hardest challenge in our case is to find a mapping

which maximizes the fit between the proximal parts of both of the models while

minimizing the amount of necessary deformation of the source model.

As with the registration process (section 2.1.1), there are both rigid and non-
rigid techniques for this task, just like the types of transformation. As a logical

consequence, we want to introduce the least amount of non-rigid transformation

to preserve as much of the anatomical resemblance as possible.

For this task, two main algorithmic approaches have been widely adopted through

the time - the iterative closest points (ICP; recall sections 2.1.1) and coherent
point drift (abbrv. CPD). In the following sections, we will go through both of the

algorithms while explaining their core principles.

2.2.1 Iterative Closest Points
The ICP algorithmwas proposed independently by Besl andMcKay [Bes92] in 1992,

and Zhang [Zha94] in 1994. Both propositions share the same principle, although

Zhang’s proposal includes a statistical method to deal with outliers, occlusion, ap-

pearance and disappearance due to which we will focus solely on the Zhang’s im-

plementation.

The core idea of the algorithm is very simple. Let us have two point clouds -

source and target. The target point cloud will be fixed, whereas the source will be

iteratively transformed in order to maximize the point match between them. The

algorithm then works throughout the whole source cloud as following:

1. In each iteration:

a) For each point in the source point cloud, match it with a point in the

target point cloud to which the distance is the lowest

b) For all of the formed point pairs, estimate a combination of rotation

and translation operations by minimizing their root mean square point-

point distance metric

c) Apply the resulting transformation to all of the points of the source

cloud

d) Repeat from step 1
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2.2.2 Coherent Point Drift

2. After the user-specified number of iterations is done or the user-specified

convergence criteria are met (e.g. minimum distance threshold; dependant

on the concrete implementation)

As hinted earlier, Zhang proposed a k-d tree algorithm in his paper for effective

closest point computation based on the probability distribution of the distances,

which mitigates the negative effect of outlier presence.

This algorithm is very simple in terms of the main idea and converges very

quickly in the first few iterations, however several significant key observations are

to be discussed. Firstly, the algorithm very easily gives only a local optimum solu-

tion, rather than a global one. Secondly, to achieve any kind of shape resemblance

within the clouds, it is strongly recommended to pre-align the shapes using a rigid
registration technique.

Overall, the ICP is a great algorithm for use when we have the sources already

pre-aligned and are looking for a slight enhancement in the rough registration.

2.2.2 Coherent Point Drift
To mitigate the drawbacks of the ICP (2.2.1) algorithm, an alternative was proposed

back in 2009 by Andryi Myronenko and Xubo Song called coherent point drift
[Myr10]. This algorithm transforms the point cloud registration problem to a prob-

ability density estimation problem.

Again, we have two point clouds - source and a target. The source represents a

Gaussian mixture model centroids (abbrv. GMM) which are coherently moved

to the target point cloud. The GMM is a clustering method calculating the incidence

of a point in a cluster in terms of probability. A GMM centroid then describes a

set of points (=GMM cluster) for which the mean position can be calculated. The

core of the CPD algorithm is to calculate a highest probability position of the cen-

troids while applying different set of transformation. The important aspect of this

algorithm is that as the centroids are defined by their mean point position, the set

of calculated transformation is applied to each point of the cluster equally, thus
moving the whole cluster somewhat coherently.

In the paper [Myr10], the authors present the algorithm in both rigid and non-

rigid variants, which enables for wide variety of application. As the paper goes into

great depth in terms of the algorithm, more details can be found in [Myr10]. The

exact steps of both variants are depicted in Figure 2.3.

Seemingly, the CPD algorithm should, in theory, bear better results in terms

of preserving the original shape, since it offers a rigid variant and takes clusters of

points into an account, whereas the ICP focuses on singular points. As we will get

to section 2.2.3, it is always not the case.
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2 Humerus Surface Model Reconstruction Analysis

Figure 2.3: The CPD algorithm in rigid and non-rigid variants. Courtesy of [Myr10]

(shared freely under the IEEE license freely for thesis reuse; Copyright ©IEEE, 2010)
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2.2.3 Bayesian Coherent Point Drift

2.2.3 Bayesian Coherent Point Drift

In 2020, Osamu Hirose (ORCID) from the Kanazawa University published a pa-

per on the CPD algorithm called “A Bayesian Formulation of Coherent Point Drift”

[Hir21]. In this paper, the author observes several main flaws to the CPD algorithm.

Among theoretical flaws are the uncertainty of the convergence of the algorithm and

the meaning of parameters controlling the centroid motion coherence. Among prac-

tical flaws are sensitivity to the target shape rotation in comparison to the source

and that the CPD algorithm’s acceleration is restricted to the use of the Gaussian ker-

nel. To mitigate all of the identified negative aspects, the paper proposes a Bayesian

formulation of the CPD algorithm named “Bayesian Coherent Point Drift (abbrv.
BCPD).

The main idea of the reformulation to guarantee the convergence of the algorithm

is to replace the motion coherence theory, based on which is the original CPD

proposal, with the theory of variational Bayesian inference (abbrv. VBI). Firstly, a
probabilistic model generating the target point cloud from the source point cloud is

defined. The model is parametrized by unobserved random variables 𝜃 from a set

of observations 𝑧, given a specific source and target point clouds. The set 𝜃 is then

estimated either by computing the maximum mode of the posterior distribution

𝑝(𝜃 |𝑧) or the expectation of 𝜃 over 𝑝(𝜃 |𝑧). However, due to several drawbacks to

this approach, such as high computational cost or unavailability of the maximum

mode because of the multimodality of the posterior distribution, the VBI relaxes

the difficulty by approximating the 𝑝(𝜃 |𝑧) using an alternative distribution 𝑞(𝜃), for
which the maximum mode or the expectation easily computed. This distribution 𝑞

is, however, unknown so the goal of finding an estimation of the 𝜃 is replaced by

finding the distribution 𝑞(𝜃) which approximates 𝑝(𝜃 |𝑧) as closely as possible. In
other words, the goal of VBI can then be formulated by the following equation:

𝑞̂(𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞(−
∫
𝑞(𝜃)𝑙𝑛( 𝑝(𝜃 |𝑧)

𝑞(𝜃) )𝑑𝜃) [Hir21]

The motion coherence used in [Myr10] is then reformulated as a prior distri-

bution of displacement vectors. An important change from the CPD is that BCPD

encapsulates both rigid and non-rigid transformation variants under a single algo-

rithm. The rigidity is then defined by the value of the 𝜆 parameter, which represents

the inverse of the expected length of the deformation vectors.

With all of the adjustments proposed in [Hir21], the final algorithm is depicted

in Figure 2.4.
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Figure 2.4: The BCPD algorithm. “ The tilde symbol attached to a matrix denotes

the Kronecker product between the matrix and 𝐼𝐷 , e.g.,
∑∼ =

∑ ⊕𝐼𝐷 and 𝑃∼ =

𝑃⊕ 𝐼𝐷 , whereas the tilde symbol attached to a vector denotes the Kronecker product

between the vector and 𝐼𝐷 , e.g., 𝑣
∼ = 𝑣 ⊕ 𝐼𝐷 and 𝑣∼

′
= 𝑣

′ ⊕ 𝐼𝐷 . The symbol 𝜓

represents the digamma function. The mth diagonal element of

∑
is denoted by 𝜎 2𝑚.

The singular value decomposition is denoted by “svd”. The determinant and trace

fo a square matrix are denoted by |.| and 𝑇𝑟(.), respectively. Unlike CPD, BCPD
simultaneously estimates the variables of non-rigid and similarity transformations.

”. Courtesy of [Hir21] (shared under the CC-BY 4.0 DEED license)
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2.2.4 Geodesic-Based Coherent Point Drift

Figure 2.5: An example depicting advantages of the GBCPD algorithm compared to

the BCPD. “(a) Human body shapes to be registered. The shapes colored black and

blue are the source and target shapes, respectively. (b) Registration of the body shapes

using BCPD with a Gaussian kernel. (c) Euclidean distance and geodesic distance

between a pair of points, colored blue and red, respectively. (d) Visualization of a

Gaussian kernel.”. Courtesy of [Hir22] (shared under the CC-BY 4.0 DEED license)

2.2.4 Geodesic-Based Coherent Point Drift
OsamuHirose also published a paper inMay of 2023 proposing a new enhancement

to his BCPD method called “Geodesic-Based Bayesian Coherent Point Drift”
(abbrv. GBCPD) [Hir22]. It’s an enhancement to the BCPD in terms of the possible

deformations. The BCPD allows, in theory, for unnatural deformations of a shape,

which in our case is not desirable. The solution is either to use the rigid “variant” of

the BCPD or the proposed GBCPD.

The core of the algorithm remains the same. As CPD and BCPD consider Eu-

clidean distance when performing the registration, GBCPD utilizes the geodesic
distance, which is defined as the shortest route between two points on a shape’s
surface. The geodesic distance can be significantly larger between two points, de-
pending on the shape of the object, therefore when registering the point clouds, the

point mapping might be done with a higher precision, although the gains will be

more significant in more complicated shapes. An important note here is that the

GBCPD is solely a non-rigid registration algorithm, unlike the previous variant.

In Figure 2.5, the possible advantages in registration are shown.

2.2.5 Random Sample Consensus
As noted earlier, the ICP can easily converge to only locally optimal solutions and

as with CPD, it suffers from the same disadvantage (however only for large planes;

[Myr10]). An alternative tackling this problem from a global perspective is the

Random Sample Consensus (abbrv. RANSAC) algorithm [FB81]. RANSAC is a
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commonly used algorithm for estimating parameters of a mathematical model con-

taining inliners and outliners. The main idea of the algorithm is that outliers

should have no influence on the value of the searched parameters whatsoever, thus

a basic assumption of having enough inliners can be made. Let’s define the following

terms:

• Let’s have an input set of data points𝑈 .

• Let’s have a parameter function 𝑓 (𝑆): 𝑆 →𝑝, where 𝑆 ⊂ 𝑈 and 𝑝 is the

calculated model parameters vector for subset 𝑆.

• Let’s have a cost function 𝜌(𝑝, 𝑥) which calculates the cost for a single data
point.

A pseudocode for this algorithm is shown in snippet 2.1.

Source code 2.1: Random sample consensus pseudocode

1 k = 0

2

3 c_thresh = 0.9 # T h r e s h o l d f o r t h e c o s t
4 c_best = 0.0 # B e s t s o l u t i o n c o s t h o l d e r
5 p_best = [] # B e s t s o l u t i o n p a r a m e t e r s
6

7 c_curr = 0.0

8 p_curr = []

9

10 i = 0

11 max_iter = 1000

12

13 while c_best < c_thresh and i < max_iter:
14 i = i + 1

15 k = k + 1

16 s_curr = random_select(U) # S e l e c t r andom s u b s e t o f U
17 p_curr = f(s_curr) # C a l c u l a t e t h e p a r a m e t e r s f o r t h e

s u b s e t S_k u s i n g f u n c t i o n f
18

19 c_curr = sum(cost(p_curr , x))
20 if c_curr > c_best:
21 c_best = c_curr

22 p_best = p_curr

The output of this algorithm is a vector 𝑝∗ containing the searched parameters

of the model which had the maximized cost function.

Now, to be able to utilize this algorithm, we need to choose the cost and pa-
rameter functions. In the case of the cost, it is fairly simple - we will calculate the

sums of distances between each pair of source and target points of the models. The
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2.2.5 Random Sample Consensus

parameter we are looking for are the distances per each pair of source and target

points. The tricky part is then to determine the corresponding point pairs, for which

we can utilize the (fast) point feature histogram.

The point feature histogram [Rus+08] is a histogram of values encoding the

overall geometrical properties of the point’s selected radius. The values are calcu-

lated as following.

Point feature histogram algorithm. Given a set of points 𝑃 = 𝑝1, ..., 𝑝𝑛, for each

point 𝑝𝑖 in 𝑃:

1. If normal 𝑛𝑖 does not exist:

a) Select all 𝑃𝑘𝛼 neighbours of 𝑝𝑖 within a given radius 𝑟𝛼

b) Approximate 𝑛𝑖 by the normal of the least-square plane to the 𝑃𝑘𝛼 surface

using Principal Component Analysis [Jol86]

c) Use existing viewpoint information 𝑣 to re-orient 𝑛𝑖 consistently:

𝑖𝑓
<𝑣−𝑝𝑖;𝑛𝑖>
| |𝑣−𝑝𝑖 | | < 0, then 𝑛𝑖 = −𝑛𝑖

2. For each point 𝑝𝑖 in 𝑃, select all 𝑃𝑘𝛼 neighbours of 𝑝𝑖 within give radius 𝑟𝛽 > 𝑟𝛼

3. For each pair of point 𝑝𝑗1 and 𝑝𝑗2 ( 𝑗1 < 𝑘𝛽 , 𝑗1 ≠ 𝑗2, 𝑗2 < 𝑗1) in 𝑃𝑘𝛽 and their

estimated normals 𝑛𝑗1 and 𝑛𝑗2 , select a source 𝑝𝑠 and target 𝑝𝑡 , the source being

the one having the smaller angle etween the associated normal and the line

connecting the points:

a) If < 𝑛𝑗1 , 𝑝𝑗2 − 𝑝𝑗1 >≤< 𝑛𝑗2 , 𝑝𝑗1 − 𝑝𝑗2 >

Then 𝑝𝑠 = 𝑝𝑗1 , 𝑝𝑡 = 𝑝𝑗2 , 𝑛𝑠 = 𝑛𝑗1 , 𝑛𝑡 = 𝑛𝑗2
Else 𝑝𝑠 = 𝑝𝑗2 , 𝑝𝑡 = 𝑝𝑗1 , 𝑛𝑠 = 𝑛𝑗2 , 𝑛𝑡 = 𝑛𝑗1

b) Define the Darboux frame with the origin in the source point as:

𝑢 = 𝑛𝑠, 𝑣 = (𝑝𝑡 − 𝑝𝑠)𝑥 𝑢
| |𝑝𝑡−𝑝𝑠 | | , 𝑤 = 𝑢

4. from 𝑝𝑠, 𝑝𝑡 , 𝑛𝑠 and 𝑛𝑡 , comput a set of 4 features that measure the angle differ-

ences between the points’ normals and the distance vector between them and

bin the values into a histogram:

a) 𝑓0 =< 𝑣, 𝑛𝑡 >

b) 𝑓1 = | |𝑝𝑡 − 𝑝 − 𝑠| |

c) 𝑓2 =
<𝑢,𝑝𝑡−𝑝𝑠>

𝑓𝑖

d) 𝑓3 = 𝑎𝑡𝑎𝑛(< 𝑤, 𝑛𝑡 >,< 𝑢, 𝑛𝑡 >)
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2 Humerus Surface Model Reconstruction Analysis

Based on the definition in the description of the algorithm in 2.2.5, the algorithm

presents a very high computational complexity (𝑁4
where N = point count) In 2009,

Rusu R., et al. then presented a fast variant of the original calculation of the point

feature histogram [RBB09] which we will be utilizing later.

2.3 Previous Work on Humerus
Reconstruction

The goal to reconstruct a patient-specific bone has been attempted in the past by

the following studies: [Hua+21], [Pol+17], [Vla+18].

[Hua+21]. In this paper, the authors attempted to reconstruct a glenohumeral joint

by using statistical shape modelling (abbrv. SSM) paired with with landmarks close

to the glenohumeral joint. The source dataset used is the same as our dataset A (more

details in section 3.2) with applied smoothing and re-meshing to achieve surfaces

with nominal element size of 1.0mm. The SSM was comprised of three main steps:

non-rigid registration, rigid body alignment and principal component anal-
ysis (abbrv. PCA). The non-rigid registration step, based on the radial basis foun-
dation algorithm (abbrv. RBF) [JAF18], was used to point-point correspondences

throughout the dataset. The rigid body alignment step utilizing the iterative closest
point algorithmwas then applied tominimize the sumof squared distances between

corresponding points of two shape surfaces. Finally, the PCA allowed any shape in

the training set to be approximated as the mean shape plus a linear combination of

the first k principal components [Abl+18]. This set of steps produced 4 statistical

shape models (two for male/female scapulas, two for male/female humeri’).

For the landmarking, 8 main humeral landmarks (4 in proximal area and 4 in

distal area) adapted from cited studies and 15 clinically relevant scapular landmarks

(eachmanually identified) were set for each sourcemodel. Landmarks of each source

meshwere then registered to the landmarks of the correspondingmeanmodel using

singular value decomposition (abbrv. SVD) to ensure that the variations in the

three-dimensional coordinates of each landmark were a consequence of geometric

variations only.

For the reconstruction process a shape prediction approach was used. The

prediction models were constructed by using an univariate absolute shrinkage
concept paired with the selection (Lasso) operator regression [Tib96]. For each

of the four SSMs, the most representative shape prediction model was chosen as

the one formed by the set of Lasso regressors which had the lowest sum of Bayesian

information criterion, and the optimal number of principal components which was

selected as the set producing the smallest “leave-one-out” root mean square errors

(abbrv. RMSE) between the predicted and actual surface mesh models.
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2.3 Previous Work on Humerus Reconstruction

A very important note by the authors states that they focused on predicting the

distal morphology based on the proximal landmarks as the CT scans did not include

the distal morphology of the humerus.

In the results section, the authors present the following results.

For the male humerus, shape prediction error was the largest (≥ 2.0mm) around

the greater tubercule, lesser tubercule and the lateral epicondyle For the female

humerus, shape prediction error was the largest (≥ 1.6mm) around the superior and

inferior-posterior regions of the humeral head as well as the inferior edge of the

distal humerus.

For humeral landmarks, the highest mean error was found at the “most medial

point of the outline of the supraspinatus insertion” landmark→6.0 mm and 4.8 mm

for male and female humeri, respectively. The lowest mean error was found at the

“the incision point between the medial epicondyle and medial part of the trochlea”

landmark→3.6 mm for the male humerus and the “the most lateral point of the lat-

eral epicondyle” landmark→2.8 mm for the female humerus. The mean RMS error

of the proximal humeruswas 1.8mmand 1.4mm formales and females, respectively.

The lowest achieved mean surface RMS error were 2.7mm and 2.1mm for the male

and female humerusmodels, respectively. For themale and the female humeri, shape

prediction error was the largest (≥ 5.0mm and 3.5mm, respectively) around the su-

perior region of proximal humerus and the inferior edge of the distal humerus

For humeral landmarks, the highest mean error was found at the “most inferior

point of the medial trochlea” landmark→10.0 mm and 7.4 mm for male and female

humeri, respectively. The lowest mean error for the male humerus was found at the

“most lateral point of the outline of the subscapularis insertion” landmark→6.8mm.

The lowest mean error for the female humerus was found at the “most medial point

of the articular perimeter of the proximal humerus” landmark→5.2mm. The mean

RMS error of the proximal humerus was 3.0 mm and 2.5 mm for males and females,

respectively. For comparison, the usual CT slice thickness used in model develop-

ment ranges from 3.0 to 5.0mm.

[Pol+17]. The aim of this paper was to reconstruct the pre-morbid anatomy 3D

of the proximal humerus by utilizing the statistical shape modelling approach.
The term “morbid” describes a humeral bone in an affected stage due to severe

osteoarthritis or fracture(s). The authors created a statistical 3Dmodel of an average

humerus from a dataset consisting of 57 CT scans (38 women, 19 men with their

mean age of 66 years (23 to 87)), all of which had not shown any unusual anatomical

features.
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2 Humerus Surface Model Reconstruction Analysis

The source models were landmarked automatically, although no exact descrip-

tion of the tools used was given. All landmarks sets were normalized in terms of

humeral size and shape in order to accommodate for their anatomical variations.

For each pair of the models the B-splines image registration algorithm was used

[Xie04]. This process was repeated until matching between all bone surfaces in the

dataset was complete and this match represented the statistical shape model (abbrv.
SSM).

Using the created SSM, a reconstruction test was performed on a second dataset

consisting of 52 CT scans of human shoulders including the whole humeri. The

concrete method used for fitting the created SSM to a particular testing model is

not explicitly disclosed, however it is presumed that the B-splines method was again

utilized for this task. Each testing model was clipped using four different clipping

planes, each mimicing different possible clinical situations.

The paper proposed the following results. With the metaphysis included, mim-

icking osteoarthritis, the errors of prediction for retroversion, inclination, height,

radius of curvature and posterior and medial offset of the head of the humerus were

2.9° (± 2.3°), 4.0° (± 3.3°), 1.0 mm (± 0.8 mm), 0.8 mm (± 0.6 mm), 0.7 mm (± 0.5 mm)

and 1.0 mm (± 0.7 mm), respectively. With the metaphysis excluded, mimicking

a fracture of the surgical neck, the errors of prediction for retroversion, inclina-

tion, height, radius of curvature and posterior and medial offset of the head of the

humerus were 3.8° (± 2.9°), 3.9° (± 3.4°), 2.4 mm (± 1.9 mm), 1.3 mm (± 0.9 mm), 0.8

mm (± 0.5 mm) and 0.9 mm (± 0.6 mm), respectively.

The authors also acknowledge the following limitations. The proposed algo-

rithm only estimated the proximal humeral anatomy. Also, for surgical purposes,

images showing at least 6cm of the proximal humerus need to be available to the

surgeon. Lastly, the testing dataset was acknowledged by the authors for possibly

not being accurate enough in terms of capturing enough of the anatomical variation

of the humeri throughout the population.

[Vla+18]. The aim of this study was to evaluate whether a statistical shape model

(SSM) has the potential to predict accurately the pretraumatic anatomyof the humerus

from the post-traumatic condition. To achieve this goal, the authors extracted one

hundred 3D triangular surface meshmodels from paired (50 left and 50 right) cadav-

eric humeri without any pathological conditions. The mesh correspondence for the

SSMwas createdwith use of thenon-rigidGaussian ProcessMorphableModels
[Lüt+16] algorithm. Subsequently, all of the meshes were rigidly aligned using the

Procrustes alignment [Ume91] approach to a single humerus model. However, no

further information on the choice of the single humerus model was given in the

study. The SSM itself was created by performing principal component analysis
[Jol86] upon the rigidly aligned meshes.
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To test out the precision of the created SSM, segments of the humerus of prede-

fined length excluding the part to predict were synthetically generated and evaluated

by the distal and proximal humeral prediction (d-HP and p-HP) errors. These errors

were defined as the deviation of the predicted humerus model from the original.

The measured mean p-HP error was 3.8° ± 1.9° and the mean d-HP error 5.5° ±
2.9° while using 85% of the proximal part of the original humerus. The limitation

of the SSM approach is the reliability of the restored model heavily depends on the

amount of the original humerus provided in the reconstruction. To give an example,

when using 50% of the original humerus, the mean p-HP error raised to 8.9° ± 5.6°

and the mean d-HP error raised to 9.9° ± 5.7°.
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Implementation 3
In this chapter we will focus on the implementation of the reconstruction process

using methods introduced in chapter 1.2. The implementation will be in form of a

module into the 3D Slicer application, details of which will be discussed in section
3.1.

3.1 3D Slicer
In this section, we will take a quick tour of the application for which we will be

developing the pipeline. We will get back to the reconstruction implementation

later in section 3.4.1. As noted at the beginning of this chapter, the reconstruction

will be implemented in form of a module for the 3D Slicer [Fed+12]. 3D Slicer is a

free open-source application for (bio)medical data visualization and manipulation

available forMacOS (both ARM and x86), Windows, and various Linux-based distri-

butions. This application offers a wide variety of operations such as segmentation,

registration, transformation, annotation and many more. All of these operations

can be performed upon 3D models and 2D medical images. Hereafter, we will be

referring to 3D Slicer as just “Slicer”. The version used for development was 5.6.1.
After launching Slicer, the user is welcomed into the main UI of the application

(Figure 3.2). The main point for interest for our usage is the scene view and the

module pane. A scene is the main data structure containing data about all objects

(also called nodes) which are currently loaded into the application and additional

data about how different structures should be rendered.

All of the data is internally stored in a Medical Reality Markup Language
(abbrv. MRML) [Fed+12] which is a open-source data model for storing this type of

data. As Slicer is the only major application using it to the day of writing this thesis,

it is being maintained mostly in the Slicer repository, but the library is developed

independently. TheMRML is based on the Visualization Toolkit (abbrv. VTK, https:
//vtk.org) file format, which is a very popular format used in the 3D computer

graphics department. Slicer also offers support for other 3D data formats, such as

the STL or the PLY file formats.
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3 Implementation

Figure 3.1: Subset of male humerus models from the dataset A imported into a 3D

scene
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3.1 3D Slicer

Figure 3.2: Slicer user interface. In the center of the UI is the main 3D scene with

light blue background. The left side of the UI shows controls for the currently

selected module. The top bar shows all of the available tools for modifying the

objects (also called nodes) present in the current scene. On the bottom is a status

bar showing the status of the last operation. In the lower left corner is the Data Probe

used for displaying information about view content at the position of the mouse

pointer. Source: https://slicer.readthedocs.io/en/latest/user guide/user

interface.html

A scene can contain one or more nodes of different types. Currently supported
types by Slicer are following:

• Data nodes - node carrying basic data properties, i.e. the models themselves.

As such data can be presented in different ways, the data nodes are divided

into subtypes of which we will focus only on the following

– Model - surface meshes

– Markup - simple objects such as points, lines. etc. Used for landmarks

• Display nodes - custom properties of a data node, for instance a color of a

node

• Storage nodes - storing options for a node

• View nodes - usually define aspects of the scene itself, for example the back-

ground color
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Figure 3.3: Example of how a Slicer scene might look like

• Plot nodes - used only for plotting and charting

One object like a 3D model can have multiple nodes where each represent a

different aspect or a property of the viewed data. Each scene can then contain various

combinations and hierarchy of different types of nodes.

3.2 Source Datasets
This thesis utilizes two humerus surface mesh datasets provided by third parties.

The first dataset, “QIN-HEADNECK” ([Bei+15], [Fed+16], [Cla+13]; referred to as

Dataset A hereafter) was provided to us by the authors of “Glenohumeral joint re-

construction using statistical shape modeling” [Hua+21], Yichen Huang and David

Ackland. The surface models are based on scans from the Cancer Imaging Archive.

We have also obtained permission from the Cancer Imaging Archive to use these

models. The dataset consists of 54 (60 initially; 6 duplicated were removed) recon-

structed 3D humerus models, out of which 24 models represent female humeri with

the mean of the age of the subjects at 58.6 ± 10.2 years and 30 models represent

male humeri with the mean of the age of the subjects at 61.0 ± 10.5 years. All of

the models are represented as triangle meshes (recall section 1.2.2). For most of

the subjects the right-hand humerus model was available (filename contains _RH_).
However, in some cases, two scans (left and right humeri) were available for a single

subject. For those, only the right-hand model was used to ensure that one subject
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is processed only once. For some subjects, only their left hand scan was made so

the reconstructed source model was mirrored in order to minimize the amount

of possible shape variation in the dataset (name contains _RHM_). The source CT
images were not shared due to data privacy concerns.

The second dataset (referred to asDataset B hereafter) is an open-source dataset

originally used in the paper “Biplane fluoroscopy derived humerus and scapula kine-

matics during arm elevation and rotation” [Ali+21]. It consists of 18 reconstructed

3D humerus models, out of which 8 models are female humeri with the age of the

subjects in the range of <22; 66> and the mean at 37 years and 10 models represent

male humeri with the age of the subjects in the range of <22; 66> with the mean

at 41.5 years. All of the models are also represented as triangle meshes. The origi-

nal models of this dataset are available both in the CT coordinate system and with

humeral anatomical coordinate systems aligned to the global coordinate system. It

was decided to use the data in the CT coordinate system to better assess the effec-

tiveness of our global registration algorithm from typical CT space, without any

pre-alignment.

3.3 Statistical Shape Model Creation
This section will focus solely on the exact steps of creating themeanmodel using the

3D Slicer application. To recall, the steps for creating a mean model are as following

(section 2.1.1):

1. Model landmarking

2. Mesh alignment

3. Point correspondence analysis

4. Mean mesh model generation

3.3.1 Model Landmarking
Themodel landmarkingwas done using an automated tool calledMALPACA [Zha+22],

which is a part of the SlicerMorph project [Rol+21]. SlicerMorph is a set of tools

used for, as the name suggests, various morphology tasks. This toolset is distributed

in the official Slicer extension repository and can be installed using the Extension

Manager right in Slicer. The concrete tool (MALPACA) is a specialized tool for au-

tomatic landmark projecting from a source mesh to a target mesh. The landmarks

placed on each humerus model can be separated into 3 main areas - the proximal

head, the humeral shaft and the distal end. On the proximal head, 6 landmarks
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have been placed - humeral head center, greater tubercle, intertubercular sul-
cus, lesser tubercle, posterior anatomical neck and medial anatomical neck.
On the humeral shaft there is only the deltoid tuberosity landmark as it is very

hard to identify other discrete landmarks on the humeral shaft. On the distal end,

6 landmarks have been placed - lateral epicondyle, posterior capitulum, me-
dial epicondyle, olecranon fossa, posterior and distal trochlea. Visualization
of placement of some of the landmarks is visible in Figure 2.1.

MALPACA Pipeline. The input for MALPACA is a single, manually landmarked

mesh and a target mesh onto which the source landmarks should be Firstly, both

of the meshes are converted into two point clouds. Then an initial rigid alignment

between the point clouds is calculated. After that, the meshes are subjected to the

deformable registration. Finally, the source landmarks are projected onto the target

using a point correspondence analysis.

Notably, the pipeline utilizes methods we have already covered in section 2.1.1,

therefore no additional in-depth explanations are needed. Each landmark transfer

was then visually inspected and adjusted, if necessary to maximize the accuracy of

the point placement relative to the anatomical aspects of the humerus.

3.3.2 Creating the Mean Model
Usually, all of the steps to create themeanmodel (as discussed in section 2.1.1) would

be implemented manually. However, in October 2023 a new paper called “A Dense

Correspondence Analysis Toolkit for Shape Analysis” [RM23] was published. In this

paper, the authors provide methods for complete shape analysis, for instance rigid

alignment, PCA [Jol86], mean model generation and more. Alongside this paper,

the open-source implementation of all of the methods mentioned in the paper was

published on GitHub (link). The implementation is, fortunately enough, tailored

specifically for Slicer, therefore it is a perfect tool to fit our needs. To install the

DeCA module, a written step by step manual is available in Appendix A.

When the DeCA module is opened, the user is greeted with the module’s main

UI (Figure 3.4). The UI consists of tabs, each serving a different purpose. For our

needs, we will be focusing only on the “Rigid alignment” and “Generate Mean”
tabs.

Mesh alignment. The next step after landmarking (section 2.1.1) is the model align-

ment. In DeCA, we will switch to the “Rigid Alignment” tab where are couple pa-

rameters to fill out.

• In “Base model” we put the path to one of the source meshes (this will be the

base of the alignment)
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Figure 3.4: Slicer DeCA module main UI

• In “Base landmarks” we put the path to the file containing landmarks of the

chosen base model

• In “Mesh directory” we put the path to the folder containing the rest of the

files representing the source mesh dataset

• In “Landmark directory” we put the path to the folder containing the rest of

the file containing landmarks of the source mesh dataset

• In “Aligned mesh directory” we put the path to the folder to which we want

to export the aligned source meshes

• In “Aligned landmarks directory” we put the path to the folder to which we

want to export the aligned source dataset landmarks

As the base model, its selection was based on a visual inspection of each of the

source models, out of which three models with the highest detail in the distal region

of themodel was chosen.With each of these threemodels, a meanmodel was created

(recall section 3.3.2) with the initial model chosen as a base. Themeanmodel used for

the analysis of this thesis was the one that had the most amount of detail in the distal

area preserved. This approach can be considered limiting in terms of including a

selection bias by the author, therefore can be considered as an area for enhancement

(later discussed in section 5).

With all of these parameters filled out, we just need to click the Run alignment
button, which will align all of the provided meshes to the base model. With the

aligned dataset we can proceed to the mean model generation.
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Figure 3.5: Slicer DeCA module Generate Mean tab

Generating themeanmodel. To generate themeanmodel, we need to switch to the

Generate Mean tab of DeCA module (Figure 3.5). We need to fill out the following

parameters:

• In “Aligned mesh directory” we provide the respective path from the previous

alignment step

• In “Aligned landmarks directory” we provide the respective path from the

previous aligned step

• In “Mean output directory” we provide the path to directory to which the

SSM will be saved

After pressing the Generate mean button, we have our mean model available in

the “Mean output directory”. In our exact case, we have created separate SSM for

both male and female. The source dataset A was divided (per sex) into 23 of models

being used for the SSM generation, while reserving 13 for further optimizations

(discussed in chapter 5). The resultingmeanmodels are depicted in chapter 4, Figures

4.1 and 4.2.
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3.4 Module Implementation
In the following sections, we will explore the concrete implementation of the recon-

struction pipeline steps as enumerated in 3.4.1. This newly proposed reconstruction

pipeline was implemented as a new module in Slicer and will be hereafter referred

to as the SlicerBoneMorphingmodule. It is available as an open-source on GitHub

(link). The installation process is identical to the DeCA module installation (recall

section A). For details, please refer to the B attachment to this paper.

3.4.1 Reconstruction pipeline proposition
In the pipeline, we will presume that the we have the mean model already prepared,

for instance as described in section 3.3. In the pipeline, we will refer to the source
model as the mean model and the target as the model to be reconstructed. The

proposed pipeline will consist of the following steps:

1. Source and target model preprocessing - downsampling and computing fast

feature point histograms (FPFH)

2. Source to target initial rigid alignment - RANSAC registration with ICP fit

enhancement

3. Source to target deformable registration for reconstruction

4. Target reconstruction

5. Result postprocessing

Before reconstructing the target (impartial) model, the SSM and the target mod-

els are pre-aligned in order to maximize the probability of reaching the best recon-

struction results. This pre-alignment stage utilizes the Random Sample Consensus

(RANSAC) algorithm for “raw” alignment and the Iterative Closest Points (ICP) algo-

rithm for the alignment enhancement. For the target reconstruction, the Bayesian

Coherent Point Drift (BCPD) algorithm was utilized.

3.4.2 Slicer Modules and Extendability
Slicer offers extendability throughout its own application programming interface

(abbrv. API). This interface is available for external software packages (in the commu-

nity referred to asmodules) which represent a standalone deployable unit into the
Slicer application. The API is offered for Python and C++. Majority of the Slicer’s

source code is written in C++, however Slicer installation includes a fully featured
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own Python environment, therefore no further installation is required from the

user.

For starters, a command line interface (abbrv. CLI) is available as part of the
Slicer’s GUI for command-like interaction with the whole application. In the of-

ficial documentation (link), authors of Slicer advise to use the CLI only for com-

mandsyntax testing and simple scene manipulation. For any more complicated in-

teractions, it is advised to create a separate module. Based on the selection of the

language, Slicer differentiates between Loadable and Scriptedmodules.

3.4.2.1 Loadable Modules

With C++, a developer can create a loadable module. Loadable modules are C++

plugins that are built against Slicer’s C++ core. When a loadable module is created

and built, it is being distributed and loaded as a shared library. Loadable modules are

recommended by the authors of Slicer only for complex andor performance-critical

interactive components or internal infrastructural widget (e.g. low level GUI com-

ponents). In C++, the developer has full access to the Slicer’s API and full control
over the Slicer UI and all internal structural components. Simple, Doxygen-style

documentation of available classes and methods inside the Slicer’s API is available

(link). However, most available tutorials and the rest of the official documentation

refers rather to the scripted module development. Overall, when not strictly nec-

essary, it is advised, especially for developers not familiar with the Slicer’s API, to

proceed with scripted modules.

3.4.2.2 Scripted Modules

Scripted modules are an easier to develop alternative to loadable modules. As

noted earlier, Slicer comes with its own fully featured Python environment with

which the developer can interact either through the CLI or with an official Slicer
Python package. This package is available only inside the Slicer and is not dis-

tributed openly using Python’s popular package manager pip. This unfortunate

aspect can slow down the prototyping process as the module needs to be loaded in

Slicer and not only mocked outside of the application, however the debugger can be

attached to a modern style IDE like VSCode or PyCharm. As with loadable modules,

when developing using Python, the Slicer API is fully accessible. As opposed to

the loadable modules, Python does not have a full control over the Slicer UI or any
of the internal structures. This means that only the GUI of the module itself can be

adjusted.

As Python is very popular in this research field, it offers many useful methods

and algorithms in the form of packages. Packages are somewhat of an analogy of

libraries in languages like Java orC++. Packages can be eithermanaged by the Python
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Figure 3.6: General schema of scripted modules in Slicer

package manager (abbrv. pip) or manually imported into the codebase. When using

pip, the packages are usually downloaded from the Python Package Index abbrv.
PyPI (link, which is the official package repository.

Every scripted module in Slicer must abide to the structural design depicted

in Figure 3.6. Before proceeding to the exact implementation, we need to create a

statistical shape model out of the provided source dataset, which will be the topic

of the following sections 3.3. Details of the reconstruction start with section 3.4.

3.4.3 Prerequisites
The SlicerBoneMorphing module utilizes the Open3D library (link) which is an

open-source library for 3D datamanipulation and is not a part of a Slicer installation.

To install this dependency, we can use the embedded pip package manager. This

process is automated and the dependencies are checked on every start of the Slicer

application. If the Open3D dependency is missing, it will be automatically installed.

To use the SlicerBoneMorphing module, any models that ought to be used with

it need to be imported into the currently opened scene as the module.

3.4.4 File Structure
As the module is of type Scripted (as discussed in section 3.4.2.2), it abides to the

following file structure. In the root of the module’s repository, a folder with the

name of the module containing all of the sources is present. The only other file that
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is needed by Slicer is the CMakeLists.txt. This file resembles settings and hints

for the compiler to know where to look for the source files and how the module

is organized. In here there are also some metadata present about the module, for

instance module dependencies, authors, category and others.

3.4.5 Module Overview

After the SlicerBoneMorphingmodule is installed successfully and selected, the user

is greeted with the main interface as shown in Figure 3.8. The module is divided

into 4 main sections: Input, Preprocessing parameters, BCPD parameters and
Postprocessing parameters (Figure 3.9). Wewill explore each section and describe

its user interface and functionality under the hood in their appropriate following

sections. To ease up the source code referencing, every method referred to is as a

part of the UML diagram of the module (Figure 3.7). All of the functionality which

will be talked about happens after the pressing the Generate button which executes
the generate_modelmethod. All of the default values of configurable parameters

(except BCPD) were chosen empirically based on visual inspection of the results

with different configurations. In case of BCPD, the default values are same as in the

O. Hirose’s implementation.

3.4.5.1 Input Section

The input section is fairly straight forward in terms of UI, however inside the mod-

ule, a couple of operations need to be performed. As hinted in section 3.4.3, our

models are represented as a vtkMRMLNodewithin a scene. Open3D, on the other
hand, needs the meshes in an open3d.geometry.TriangleMesh format, therefore a

conversion method needed to be implemented. Internally, this method is called con-
vert_model_to_mesh. The vertices and triangle indices are extracted from the vtkM-

RMLNode and by using vtk_to_numpy function, we convert the them to numpy
data structures and out of those we are finally able to construct a TriangleMesh. The

TriangleMesh is a clone of the source mesh, therefore the source remain unchanged.

3.4.5.2 Preprocessing Section

Based on the previous section (3.4.5.1), themeshes are represented asTriangleMeshes.

However for the preprocessing section we only need the point set, therefore for this

section we will be working only with the point clouds. After converting the source
and target models into a more convenient format, we can preprocess the meshes.

Internally, all of the preprocessing is covered in the preprocess_modelmethod.
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Figure 3.7: SlicerBoneMorphing UML diagram
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Figure 3.8: Main user interface of the SlicerBoneMorphing module

52



3.4.5.2 Preprocessing Section

Figure 3.9: SlicerBoneMorphing UI input section

Downsampling. In this stage we apply voxel downsampling on the point cloud

based on the distance threshold set by the user. The downsampling step is included

to mitigate the computational complexity of some of the methods discussed in sec-

tion 1.2. The downsampling “groups” the points into voxels based on the “Down-

sampling distance threshold” (the size of the voxels determined automatically by

Open3D). Each occupied voxel then generates exactly one point by averaging all

points inside. If downsampling is not desirable, the user can configure the “Down-

sampling distance threshold” to be lower than the lowest distance between two

adjacent points.

Normals estimation and Fast Point Feature Histogram. To compute the Fast

Point Feature Histogram (recall section 2.2.5), we need to estimate the normals of the

point clouds. For that we will use the open3d.geometry.PointCloud.estimate_normals
method. This method computes the normal by finding adjacent points and calculat-

ing the principal axis of the adjacent points using covariance analysis. The required

parameters are radius andmax number of neighbours. These values can be ad-
justed by the user using the “Normals estimation radius” and “Normals estimation

max neighbours”, respectively.

Using the estimated normals of the point clouds, we can compute the Fast Point

Feature Histogram using the open3d.pipelines.registration.compute_fpfh_feature. The
required parameters are again a radius andmax number of neighbours, though
they do not need to be the same values as for the normals estimation.

RANSAC and ICP registration. With the histograms calculated, we can proceed to

the registration process. Firstly, the RANSAC registration is performed as the global

registration process to roughly align the models. Open3D again offers a concrete

method open3d.pipelines.registration.registration_ransac_based_on_feature_matching.
Secondly, ICP is performed on the pre-aligned models to limit the amount of rigid

registration but refine the alignment as much as possible.

For RANSAC, three different parameters are available for the user to adjust:

“Max iterations”, “Distance threshold” and “Fitness threshold”. “Max iterations” is

the maximum number of iterations may be reached. “Distance threshold ” is the

maximal threshold for two points that can be considered corresponding. “Fitness
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threshold” is theminimal fitness for the registration to be considered a fit. It can

also be interpreted as a minimum percentual alignment match between the models.

For ICP there is only a single adjustable parameter “ICP Distance threshold” and

it represents themaximum distance in which a neighbour is being searched for.

3.4.5.3 BCPD Section

As discussed in section 2.2.3, the BCPD’s implementation is publicly available on O.

Hirose’s GitHub. The source code is written in C and has been seemingly obfuscated

for the purposes of With no documentation available solely for the source code, the

module uses a manually pre-built binary executable. The binary version used by the

SlicerBoneMorphing was built by the author of this paper for Windows 10 (x86),

Linux distributions (x86) andMacOS (ARM/x86) using theMakefile provided in the

repository. For MacOS, only the x86 version of the binary is available since Slicer

as of version 5.6.1 runs in the Rosetta translation layer, however it has been tested

by the author that the module is compatible with Apple M-chip based computers

chips as well. The binaries are distributed as a part of the module, therefore no user

interaction is required.

A thought has also been given to creating a shared library rather than using

the BCPD as a black-box binary, and by utilizing the Python-C bindings, using

the internal C functions. This has also been tested by the author and did initially

work, however slight compatibility issues with several C libraries were encountered.

Combined with the fact that the BCPD implementation was seemingly not created

with such usage in mind, we have decided not to proceed in this manner any further.

Now, let us focus back on the SlicerBoneMorphing module. The BCPD section

is internally represented by the deformable_registrationmethod. The BCPD expects

the input in a form of two text files (the source and target models, respectively)

containing the coordinates for each vertex. Due to this requirement, the module

exports the meshes as text files into the operating system’s temporary file directory

and passes the paths to the BCPD. Alongside the paths, a high number of parameters

can be configured for the BCPD. Due to their relatively high count, their explanation

will not be a part of this paper If necessary, please consult the user manual in the

BCPD GitHub repository (link).

As expected, the BCPD returns the deformed generated model in a file form,

thus a reverse process of importing takes place. We also create a clone of the result

model which we merge directly with the source model to show the user the exact

fit of the result. In other words, there are two models imported into the scene.
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3.4.5.4 Postprocessing Section

After obtaining the resulting deformed fully generated model, we give the user an

option to apply a bit of postprocessing if necessary as the part of the pipeline. In

postprocessing, the module offers two operations -mesh simplification andmesh
smoothening. The settings for thesemethods corresponds to parameters “Clustering

scaling” and “Smoothing iterations”

Mesh simplification. Mesh simplification is a process where we want to represent

a high-density mesh by a low density while keeping the overall shape aspects. In

other words, it can be understood as form of downscaling. For this we utilize the
open3d.geometry.simplify_vertex_clustering which averages out each set of vertices.
The amount of scaling is controlled by the user. If set to 1.0 (default value), no

simplification is applied.

Mesh smoothing. Mesh smoothing is, as the name implies, a method to smooth

the surface of a mesh. There are various methods available in Open3D. In our case

we firstly apply a “rough” smoothing with the open3d.geometry.filter_smooth_simple
method and then apply a second smoothing process using the open3d.geometry.filter_
smooth_taubin[Tau95] method. The amount of smoothing is also controlled by the

user. If set to 0 (default value), no smoothing is applied.
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Results 4
In this section we will take a look into the results of the reconstruction process.

To recall, 8 female and 10 male models (dataset B) were used for the testing of the

reconstruction. All of the meshes needed to be cropped in their proximal head

area to test the reconstruction. The cropping was a straightforward process and the

source code can be found in Appendix C.

4.1 Mean Model Results
Firstly, we will take a look into the resulting mean models created using the DeCA

Slicer module, as discussed in section 3.3.2. The resulting mean models are depicted

in Figures 4.1 and 4.2.

Notably, the resulting mean models are very smoothed out, which is not a bad

property, however the proximal humeral neck and the distal trochlea areas do seem

slightly oversmoothed. The cause of is not completely known, however it is sus-

pected that A) the source models (dataset A) were already smoothed out too much

in order to achieve a better mean model. On the other hand, this is a sensibly fixable

issue if enough highly detailed models are gathered.

4.2 Reconstruction Results
Now, we will focus on the result of the reconstruction process itself (with informa-

tion from 4.1 in mind).

To test the functionality of our pipeline, a testing scenario was created. Instead

of using the mean model, simply a model of a full humerus and a partial (unrelated)

counterpart were taken. These sources are depicted in Figure 4.3. The models were

chosen as a duo which visually did not resemble each other in terms of their anatom-

ical properties while being as detailed as possible. Figure 4.4 shows the result of the

reconstruction.

In the testing scenario, the results seem very promising. The reconstructed bone

remains highly detailed in the generated proximal area with a bit of widening of
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Figure 4.1: Male statistical shape model created using the DeCA module with its

anatomical landmarks highlighted
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4.2 Reconstruction Results

Figure 4.2: Female statistical shape model created using the DeCA module with its

anatomical landmarks highlighted
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Figure 4.3: An “ideal” testing scenario testing source models from different angles
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4.2 Reconstruction Results

Figure 4.4: An “ideal” testing scenario result model from different angles
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Figure 4.5: Testingmodel “O45_001_F_47_R_Humerus” with its cropped distal part

the distal part and the distal articular surface being slightly “squished”. Also, the

model’s fit within the humeral shaft also contains a protrusion just like in the source

model, which shows that the source model’s aspects are, in fact, being projected on

the reconstructed models as anticipated. This scenario is good for testing out the

reconstruction, however the results are not representative of a usual case since the

mean model captures the overall variation of the humerus.

As noted in section 4.1, the results presented below did not yield as promising

results.

As an example, a comparison of results for themodel “O45_001_F_47_Humerus”

are shown (Figure 4.5). All of the testing models have yielded very similar behaviour.

The resulting reconstruction of this model is shown in Figure 4.6.

When visually inspected, all of the results shared a couple of common aspects.

Firstly, the calculation of the rigid pre-alignment did require slight manual adjust-

ments of the module’s preprocessing parameters for every case separately. To be

exact, out of all of the available parameters, only the downsampling distance
threshold, normals estimation radius and normals estimation max neigh-
bours (recall the preprocessing section 3.4.5.2) parameters needed a slight adjust-
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Figure 4.6: Result of the reconstruction of the model “O45_001_F_47_R_Humerus”
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ment in their values. For each model, the exact values of these parameters are speci-

fied in a form of a text file inside the distributed archive. These adjustments were

necessary as the cropped models were (in about 90% of the cases) being invalidly

fitted to the distal end of the mean model (as depicted in Figure 4.7).

The cause of this error in rigid alignment was first presumed to be cropped

models being non-uniform (jagged) and unclosed in the area of the humeral shaft

cropping, these ends were confusing the RANSAC algorithm. To test this hypothesis,

one of the models was cropped and then closed up using a modified version of

the cropping script with the source code available in Appendix D. The resulting

closed up mesh model is shown in Figure 4.8. However, even the closed up partial

model yielded the same problems of invalid fitness. After adjusting the appropriate

parameters, a better alignment fit was achieved, yet still to be improved (Figure 4.9).

All of the models also shared one common issue in terms of length preser-
vation, or rather lackthereof. The main suspect is the difference in the amount of

deformation of the distal humerus allowed by the settings of the BCPD algorithm

and the actual amount of deformation needed for the proximal humeri to align prop-

erly. However this hypothesis remains to be investigated further and is therefore

out of scope of this thesis.
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Figure 4.7: Example of an invalid rigid pre-alignment fit. Green model represents

the mean model whereas the red model represents the partial target model
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Figure 4.8: Cropping of the “U35_008_F_22_R_Humerus” model (left) and its

“closed-up” version (center, right)
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4.2 Reconstruction Results

Figure 4.9: Example of an improved rigid alignment after adjusting some of the

module’s parameters
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Conclusion and
Discussion 5
This thesis provides a newpipeline for the patient-specific humerus distal part recon-

struction with analysis of possible approaches and the current state of research in

this area. The reconstruction implementation is available as an open-source module

into the 3D Slicer application, which can also be used in other cases in reconstruc-

tionmissingmorphology. Based on the testing, in ideal conditions the reconstructed

modules appear to be of good quality. On the other hand, in other cases it is desirable

to further improve the reconstruction results.

Fortunately, there’s still a lot of room for improvement. One of the possible

enhancement could be in form of a hyperparameter search, i.e. test many different

parameter settings of the module and empirically choose the best one. Next, the

rigid alignment could be calculated by utilizing important anatomical landmarks

rather than automatic inference of fitness. Additionally, the process of selection of

the base model for the statistical mean model creation can be optimized (as noted in

section 3.3.2). In terms of the length preservation issue, possible solutions include

the use of deformable statistical shape models and/or constraining deformations in

the distal target mesh.
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DeCA Module
Installation A
Installing the DeCA module into Slicer is a very straight forward process. Firstly

clone theGitHub repositorywherever youwant to on your disk and navigate to it. In

the cloned repo, there will be two main folders:DeCA and ReadLandmarksUBC
(Figure A.1). We will be using these two folders shortly so do not close the file viewer

yet. Next, open up Slicer, navigate to the Edit menu→Application Settings. In the
settings open up the Modules tab and pay attention to the Additional module
paths section. Now drag & drop the mentioned two folders into this window. The

“Additional module paths” section should now contain both of the absolute paths to

the DeCAmodule (Figure A.2). Now restart Slicer and if the installation is successful,

you should now have two new modules available in the Modules overview in Slicer

(Figure A.3).

Figure A.1: DeCA module file structure
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A DeCA Module Installation

Figure A.2: Slicer Additional module paths section

72



A DeCA Module Installation

Figure A.3: Slicer module list with DeCA installed
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SlicerBoneMorphing
User Manual B
B.1 Installation
Supported platforms

• Linux (x86_64)

• Windows (x86_64)

• MacOS (both x86_64 and ARM; Slicer runs through Rosetta on ARM-based

Macs)

Steps:

1. Download the latest ZIP package from GitHub Releases

2. Extract the ZIP contents to your desired folder

3. Open up 3D Slicer and go to Edit→Application Settings

4. In the **modules** section, add the extracted contents’ path to “Additional

Module Paths”

5. Restart 3D Slicer

DISCLAIMER! After restarting, the installation process will begin. If there are

any Python modules not available in Slicer, they will be installed, so the startup

will take SIGNIFICANTLY MORE amount of time. Do not be scared, this is

intended behaviour.

B.2 Module Description
This section will describe the basics of the module for the user.
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B.2.1 Input Section
This section is self-explanatory. Here, you can choose two input models:

• Source = the mean model, i.e. a full humerus

• Target = partial model to be reconstructed

B.2.2 Preprocessing
Before the generation process, we want to preprocess the model. First of all is the

option of downsampling. For this you can configure the threshold for downsampling

by the following parameter:

• Downsampling distance threshold

– If set to 0.0, no downsampling is performed

After the downsampling, we compute the normals of the point clouds. The com-

putation needs a radius for which the normals are calculated and maximum number

of neighbours. These can be adjusted with the following parameters:

• Normals estimation radius - maximum radius in which points are consid-

ered neighbouring

• Normals estimation max neighbours - maximum number of neighbours

taken into account

Also, we need to calculate a (Fast) point feature histogram in order to encode the

local geometric properties of the models. This method uses the following parame-

ters:

• FPFHsearch radius -maximum radius inwhich points are considered neigh-

bouring

• FPFH max neighbours - maximum number of neighbours taken into ac-

count

B.2.2.1 Registration

At this moment we have our models preprocessed and ready for the next step, which

is the registration. Here we calculate the rigid alignment of the models in order to

pre-align them. The concrete method we use is called RANSAC (random sample

consensus). The behaviour of this algorithm can be adjusted by the following pa-

rameters:
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• Max iterations

• Distance threshold - maximum distance in which corresponding points are

considered reachable

• Fitness threshold - the lowest fitness of the models to be accepted (section

3.4.5.2)

The computed fit by the RANSAC algorithm is a bit “raw”. To improve it further,

we perform the ICP (Iterative closest points) algorithm. This can be tuned by the

following parameter:

• ICPDistance threshold -maximumdistance inwhich points are considered

neighbouring

B.2.3 Reconstruction
Since we now have a preprocessed meshes and with defined transformations from

the source to the target, we can proceed to the reconstruction section. For the re-

construction we use the BCPD (Bayesian coherent point drift) algorithm. Now,

the BCPD allows for very fine adjustments of its behaviour using lots of different

parameters. For the exact description of their effects, please refer to the official

documentation here.

You do NOT have to perform any kind of installation process, the BCPD and

its geodesic variant are already pre-built and preconfigured for immediate use

in this module.

Not implemented options:

• Terminal output

• File output

B.2.4 Postprocessing
After the model is reconstructed, we include a postprocessing section to slightly

modify the result, if necessary. For these, we let you modify the following parame-

ters:

• Clustering scaling

– Scaled size of voxel for within vertices that are clustered together

– If set to 1.0, no scaling is applied
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Figure B.1: Slicer scene model list with the imported reconstructed model

• Smoothing iterations - Number of iterations of mesh smoothing

– If set to 0, no smoothing is applied

After the whole process is done, both the generated mesh (source transformed

into target, standalone) and the merged mesh (generated meshes merged with the

target; “combined model”) are import back into the current Slicer scene (Figure B.1).
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Mesh Cropping Script C
Source code C.1: Code snippet for mesh cropping

1 def crop(mesh_filename: str , gender: str):
2 mesh = o3d.io.read_triangle_mesh(os.path.join(

MESH_SOURCE_DIR , gender , mesh_filename))

3

4 # Compu t e t h e o r i e n t e d b o u n d i n g b o x
5 obb = mesh.get_oriented_bounding_box ()

6

7 # D e t e r m i n e t h e m a j o r a x i s and i t s e x t e n t
8 extents = np.asarray(obb.extent)

9 major_axis_index = np.argmax(extents)

10 major_axis_extent = extents[major_axis_index]

11

12 # C a l c u l a t e t h e e x t e n t f o r t h e c r o p p i n g v o l um e ( one − t h i r d
o f t h e m a j o r a x i s )

13 cropped_extent = extents.copy()

14 cropped_extent[major_axis_index] /= 3

15

16 # Compu t e t h e c e n t e r f o r t h e p r o x i m a l c r o p p i n g v o l um e
17 # I n v e r t i n g t h e d i r e c t i o n o f t h e a d j u s t m e n t t o a l i g n w i t h

t h e c o r r e c t p r o x i m a l e n d
18 cropped_center = obb.center + obb.R[:, major_axis_index]

∗ (major_axis_extent / 3)

19

20 # C r e a t e t h e c r o p p i n g v o l um e ( a s m a l l e r OBB f o r t h e
p r o x i m a l t h i r d )

21 cropped_obb = o3d.geometry.OrientedBoundingBox(

cropped_center , obb.R, cropped_extent)

22 proximal_mesh = mesh.crop(cropped_obb)

23 proximal_mesh.compute_vertex_normals ()

24

25 o3d.visualization.draw_geometries ([ proximal_mesh ])

26 o3d.io.write_triangle_mesh(mesh=proximal_mesh , filename=

os.path.join(MESH_OUTPUT_DIR , gender , mesh_filename))
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Mesh Cropping and
Closing Script D

Source code D.1: Code snippet for mesh cropping and closing

1 def crop(mesh_filename: str , gender: str):
2 mesh = o3d.io.read_triangle_mesh(os.path.join(

MESH_SOURCE_DIR , gender , mesh_filename))

3

4 # Compu t e t h e o r i e n t e d b o u n d i n g b o x
5 obb = mesh.get_oriented_bounding_box ()

6

7 # D e t e r m i n e t h e m a j o r a x i s and i t s e x t e n t
8 extents = np.asarray(obb.extent)

9 major_axis_index = np.argmax(extents)

10 major_axis_extent = extents[major_axis_index]

11

12 # C a l c u l a t e t h e e x t e n t f o r t h e c r o p p i n g v o l um e ( one − t h i r d
o f t h e m a j o r a x i s )

13 cropped_extent = extents.copy()

14 cropped_extent[major_axis_index] /= 3

15

16 # Compu t e t h e c e n t e r f o r t h e p r o x i m a l c r o p p i n g v o l um e
17 # I n v e r t i n g t h e d i r e c t i o n o f t h e a d j u s t m e n t t o a l i g n w i t h

t h e c o r r e c t p r o x i m a l e n d
18 cropped_center = obb.center + obb.R[:, major_axis_index]

∗ (major_axis_extent / 3)

19

20 # C r e a t e t h e c r o p p i n g v o l um e ( a s m a l l e r OBB f o r t h e
p r o x i m a l t h i r d )

21 cropped_obb = o3d.geometry.OrientedBoundingBox(

cropped_center , obb.R, cropped_extent)

22

23 # Crop t h e me sh t o g e t t h e p r o x i m a l t h i r d
24 proximal_mesh = mesh.crop(cropped_obb)

25

26 pcd2 = o3d.geometry.PointCloud ()

27 pcd2.points = proximal_mesh.vertices
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D Mesh Cropping and Closing Script

28 pcd2.colors = proximal_mesh.vertex_colors

29 pcd2.normals = proximal_mesh.vertex_normals

30

31 proximal_mesh = o3d.geometry.TriangleMesh.

create_from_point_cloud_poisson(pcd=pcd2 , depth=6, width

=1, linear_fit=False)[0]

32

33 proximal_mesh.compute_vertex_normals ()

34

35 o3d.visualization.draw_geometries ([ proximal_mesh ])

36 o3d.io.write_triangle_mesh(mesh=proximal_mesh , filename=

os.path.join(MESH_OUTPUT_DIR , gender , mesh_filename))

82



Bibliography

[Abl+18] ABLER, Daniel et al. A statistical shape model to predict the premorbid

glenoid cavity. Journal of shoulder and elbow surgery. 2018, vol. 27, no.
10, pp. 1800–1808. Available from doi: 10.1016/j.jse.2018.04.023.

[Ali+21] ALIAJ, Klevis; HENNINGER,HeathB.; SULKAR,Hema;KOLZ,Christo-

pher. Biplane fluoroscopy derived humerus and scapula kinematics during
arm elevation and rotation. 2021. Available from doi: 10.5281/zenodo.

4536684.

[Amb+19] AMBELLAN, Felix; LAMECKER, Hans; VON TYCOWICZ, Christoph;

ZACHOW, Stefan. Advances in Experimental Medicine and Biology. Sta-
tistical ShapeModels: Understanding andMasteringVariation inAnatomy.

2019. Available from doi: 10.1007/978-3-030-19385-0\\{ },5=.

[Bei+15] BEICHEL, Reinhard R et al. Data From QIN-HEADNECK. The Cancer
Imaging Archive, 2015. Available from doi: 10.7937/K9/TCIA.2015.

K0F5CGLI.

[Bes92] BESL P.J., McKay D. Neil. A method for registration of 3-D shapes.

1992. Available also from: https://ieeexplore.ieee.org/document/

121791.

[BB] BIOMEDICAL IMAGING, National Institue of; BIOENGINEERING.

Magnetic Resonance Imaging (MRI). Available also from: https://www.

nibib.nih.gov/science-education/science-topics/magnetic-

resonance-imaging-mri.

[Bor23] BOROWY, Christopher S. Sonography physical principles and instrumen-
tation. 2023-03-20. Available also from: https://www.ncbi.nlm.nih.

gov/books/NBK567710/.

[Cla+13] CLARK, Kenneth W. et al. The Cancer Imaging Archive (TCIA): Main-

taining and operating a public information repository. Journal of dig-
ital imaging. 2013, vol. 26, no. 6, pp. 1045–1057. Available from doi:

10.1007/s10278-013-9622-7.

83

https://doi.org/10.1016/j.jse.2018.04.023
https://doi.org/10.5281/zenodo.4536684
https://doi.org/10.5281/zenodo.4536684
https://doi.org/10.1007/978-3-030-19385-0\\{_}, 5 =
https://doi.org/10.7937/K9/TCIA.2015.K0F5CGLI
https://doi.org/10.7937/K9/TCIA.2015.K0F5CGLI
https://ieeexplore.ieee.org/document/121791
https://ieeexplore.ieee.org/document/121791
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.ncbi.nlm.nih.gov/books/NBK567710/
https://www.ncbi.nlm.nih.gov/books/NBK567710/
https://doi.org/10.1007/s10278-013-9622-7


Bibliography

[D20] D,Walter Ledermann. Leyendo a Spallanzani hoy en día.Revista Chilena
De Infectologia. 2020, vol. 37, no. 1, pp. 64–68. Available from doi: 10.

4067/s0716-10182020000100064.

[Dec+21] DECKERS, Claudia et al. Midterm MRI Follow-Up of untreated en-

chondroma and atypical cartilaginous tumors in the long bones. Can-
cers. 2021, vol. 13, no. 16, p. 4093. Available fromdoi: 10.3390/cancers13164093.

[FLJ21] F PAULO, Soraia; LOPES, Daniel; JORGE, Joaquim. 3D Reconstruction

fromCT Images Using Free Software Tools. In: 2021, pp. 135–157. isbn

978-3-030-61904-6. Available from doi: 10.1007/978-3-030-61905-

3 8.

[Fed+12] FEDOROV, Andriy et al. 3D Slicer as an image computing platform for

the Quantitative Imaging Network.Magnetic resonance imaging. 2012,
vol. 30, no. 9, pp. 1323–1341. Available fromdoi: 10.1016/j.mri.2012.

05.001.

[Fed+16] FEDOROV, Andriy et al. DICOM for quantitative imaging biomarker

development: a standards based approach to sharing clinical data and

structured PET/CT analysis results in head and neck cancer research.

PeerJ. 2016, vol. 4, e2057. Available from doi: 10.7717/peerj.2057.

[FB81] FISCHLER, Martin A.; BOLLES, Robert C. Random sample consensus.

Communications of the ACM. 1981, vol. 24, no. 6, pp. 381–395. Available

from doi: 10.1145/358669.358692.

[FA] FOOD, U.S.; ADMINISTRATION, Drug. Radiography. Available also
from: https://www.fda.gov/radiation-emitting-products/medical-

x-ray-imaging/radiography.

[Har24] HARRIS, Tom. How x-rays work. 2024. Available also from: https://

science.howstuffworks.com/x-ray.htm.

[HH13] HAYNES, Heather; HOLMES, WilliamM. Geomorphological Techniques
(Online Edition). The emerging use of Magnetic Resonance Imaging

(MRI) for 3D analysis of sediment structures and internal flow pro-

cesses. British Society for Geomorphology, 2013. Geomorphological

Techniques (Online Edition). Chap. 1, Sec. 5.4 - Imaging sediment struc-

tures.

[Her23] HERMENA, Shady. CT-Scan image production procedures. 2023. Avail-

able also from: https://www.ncbi.nlm.nih.gov/books/NBK574548/.

[Hir21] HIROSE, Osamu. A Bayesian formulation of coherent point drift. IEEE
transactions on pattern analysis and machine intelligence. 2021, vol. 43, no.
7, pp. 2269–2286. Available from doi: 10.1109/tpami.2020.2971687.

84

https://doi.org/10.4067/s0716-10182020000100064
https://doi.org/10.4067/s0716-10182020000100064
https://doi.org/10.3390/cancers13164093
https://doi.org/10.1007/978-3-030-61905-3_8
https://doi.org/10.1007/978-3-030-61905-3_8
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.7717/peerj.2057
https://doi.org/10.1145/358669.358692
https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/radiography
https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/radiography
https://science.howstuffworks.com/x-ray.htm
https://science.howstuffworks.com/x-ray.htm
https://www.ncbi.nlm.nih.gov/books/NBK574548/
https://doi.org/10.1109/tpami.2020.2971687


Bibliography

[Hir22] HIROSE, Osamu. Geodesic-Based Bayesian coherent point drift. IEEE
transactions on pattern analysis and machine intelligence. 2022, pp. 1–18.
Available from doi: 10.1109/tpami.2022.3214191.

[Hua+21] HUANG, Yichen; ROBINSON, Dale L.; PITOCCHI, Jonathan; LEE, Pe-

ter Vee Sin; ACKLAND,DavidC.Glenohumeral joint reconstruction us-

ing statistical shape modeling. Biomechanics and modeling in mechanobi-
ology (Internet). 2021, vol. 21, no. 1, pp. 249–259. Available from doi:

10.1007/s10237-021-01533-6.

[Jol86] JOLLIFFE, Ian T. Springer series in statistics. Principal component anal-

ysis and factor analysis. 1986. Available from doi: 10.1007/978- 1-

4757-1904-8 7.

[JAF18] JU, Zhang; ACKLAND, David C.; FERNANDEZ, Justin. Point-cloud

registration using adaptive radial basis functions. Computer methods in
biomechanics and biomedical engineering. 2018, vol. 21, no. 7, pp. 498–
502. Available from doi: 10.1080/10255842.2018.1484914.

[LC87] LORENSEN, William E.; CLINE, H. E. Marching cubes: A high res-

olution 3D surface construction algorithm. Computer Graphics. 1987,
vol. 21, no. 4, pp. 163–169. Available from doi: 10.1145/37402.37422.

[Lüt+16] LÜTHI, Marcel; JUD, Christoph; GERIG, Thomas; VETTER, Thomas.

Gaussian Process Morphable Models. 2016. Available also from: https:

//arxiv.org/abs/1603.07254.

[Mel14] MELTON, J. Trends in Fracture Incidence: A Population-Based Study

Over 20 Years. 2014, pp. 582–585. Available also from: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC3929546/#S6title.

[Myr10] MYRONENKOA., SongX. Point Set Registration: Coherent PointDrift.

2010. Available also from: https://ieeexplore.ieee.org/document/

5432191.

[Pat23] PATEL, Maulik. Neonatal distal humeral fracture - ultrasound. Ra-
diopaedia.org. 2023. Available from doi: 10.53347/rid-159640.

[Pol+17] POLTARETSKYI, Sergii et al. Prediction of the pre-morbid 3D anatomy

of the proximal humerus based on statistical shape modelling. The Bone
& Joint journal. 2017, vol. 99-B, no. 7, pp. 927–933. Available from doi:

10.1302/0301-620x.99b7.bjj-2017-0014.

[Pub21] PUBLISHING, Harvard Health. Radiation risk from medical imaging.
2021-09. Available also from: https://www.health.harvard.edu/

cancer/radiation-risk-from-medical-imaging.

85

https://doi.org/10.1109/tpami.2022.3214191
https://doi.org/10.1007/s10237-021-01533-6
https://doi.org/10.1007/978-1-4757-1904-8_7
https://doi.org/10.1007/978-1-4757-1904-8_7
https://doi.org/10.1080/10255842.2018.1484914
https://doi.org/10.1145/37402.37422
https://arxiv.org/abs/1603.07254
https://arxiv.org/abs/1603.07254
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929546/#S6title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929546/#S6title
https://ieeexplore.ieee.org/document/5432191
https://ieeexplore.ieee.org/document/5432191
https://doi.org/10.53347/rid-159640
https://doi.org/10.1302/0301-620x.99b7.bjj-2017-0014
https://www.health.harvard.edu/cancer/radiation-risk-from-medical-imaging
https://www.health.harvard.edu/cancer/radiation-risk-from-medical-imaging


Bibliography

[Rad86] RADON, Johann. On the determination of functions from their integral

values along certain manifolds. IEEE Transactions on Medical Imaging.
1986, vol. 5, no. 4, pp. 170–176. Available from doi: 10.1109/TMI.1986.

4307775.

[RM23] ROLFE, Sara;MAGA,A.Murat.LectureNotes in Computer Science. DECA:
A Dense Correspondence Analysis Toolkit for shape analysis. 2023.

Available from doi: 10.1007/978-3-031-46914-5\ ,21=.

[Rol+21] ROLFE, Sara et al. SlicerMorph: An open and extensible platform to

retrieve, visualize and analyse 3D morphology.Methods in ecology and
evolution. 2021, vol. 12, no. 10, pp. 1816–1825. Available from doi: 10.

1111/2041-210x.13669.

[RBB09] RUSU, Radu Bogdan; BLODOW, Nico; BEETZ, Michael. Fast Point

Feature Histograms (FPFH) for 3D registration. IEEE. 2009. Available
from doi: 10.1109/robot.2009.5152473.

[Rus+08] RUSU,RaduBogdan;MÁRTON,Zoltán-Csaba; BLODOW,Nico; BEETZ,

Michael. Learning informative point classes for the acquisition of ob-

ject model maps. IEEE. 2008. Available from doi: 10.1109/icarcv.

2008.4795593.

[Tau95] TAUBIN, G. Curve and surface smoothing without shrinkage. 1995,

pp. 852–857. Available from doi: 10.1109/ICCV.1995.466848.

[Tib96] TIBSHIRANI, Robert. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B. Methodological. 1996,
vol. 58, no. 1, pp. 267–288. Available from doi: 10.1111/j.2517-6161.

1996.tb02080.x.

[Ume91] UMEYAMA, S. Least-squares estimation of transformation parameters

between two point patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 1991, vol. 13, no. 4, pp. 376–380. Available from
doi: 10.1109/34.88573.

[Vla+18] VLACHOPOULOS, Lazaros et al. Restoration of the Patient-Specific

anatomy of the proximal and distal parts of the humerus. The Journal
of bone and joint surgery. American volume. 2018, vol. 100, no. 8, e50.
Available from doi: 10.2106/jbjs.17.00829.

[Wei+20] WEI, Hang et al. 2-Step Sparse-ViewCTReconstructionwith aDomain-

Specific Perceptual Network. arXiv (Cornell University). 2020. Available
from doi: 10.48550/arxiv.2012.04743.

[Xie04] XIE Z, Farin GE. Image registration using hierarchical B-splines. 2004.

Available also from: https://ieeexplore.ieee.org/document/1260760.

86

https://doi.org/10.1109/TMI.1986.4307775
https://doi.org/10.1109/TMI.1986.4307775
https://doi.org/10.1007/978-3-031-46914-5\_, 21 =
https://doi.org/10.1111/2041-210x.13669
https://doi.org/10.1111/2041-210x.13669
https://doi.org/10.1109/robot.2009.5152473
https://doi.org/10.1109/icarcv.2008.4795593
https://doi.org/10.1109/icarcv.2008.4795593
https://doi.org/10.1109/ICCV.1995.466848
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/34.88573
https://doi.org/10.2106/jbjs.17.00829
https://doi.org/10.48550/arxiv.2012.04743
https://ieeexplore.ieee.org/document/1260760


Bibliography

[Zha+22] ZHANG, Charles; PORTO, Arthur; ROLFE, Sara; KOCATULUM, Al-

tan; MAGA, A. Murat. Automated landmarking via multiple templates.

PloS one. 2022, vol. 17, no. 12, e0278035. Available from doi: 10.1371/

journal.pone.0278035.

[Zha94] ZHANG, Zhengyou. Iterative point matching for registration of free-

form curves and surfaces. International journal of computer vision. 1994,
vol. 13, no. 2, pp. 119–152. Available from doi: 10.1007/bf01427149.

[ZH] ZHUO WANG, Ming-Yue Lv; HUANG, Yao-Xiong. Effects of Low-

Dose X-Ray on Cell Growth, Membrane Permeability, DNA Damage

and Gene Transfer Efficiency. [N.d.]. Available also from: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC7597563/.

87

https://doi.org/10.1371/journal.pone.0278035
https://doi.org/10.1371/journal.pone.0278035
https://doi.org/10.1007/bf01427149
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597563/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597563/




List of Figures

1.1 Example of a model of the humerus bone . . . . . . . . . . . . . . . . 4

1.2 An example of a humerus bone scanned using the MRI method. (a) de-

picts a humerus with a cartilaginous tumor, (b) depicts this condition in

an earlier stage. Courtesy of [Dec+21] (shared under theCC-BY 4.0 DEED

license) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Example of a real MRI scanner. Courtesy of MART PRODUCTION

(freely available under the Pexels licence) . . . . . . . . . . . . . . . . . 7

1.4 Cross-section of an MRI scanner. Courtesy of [HH13] (shared under

BGS licence for non-commercial use) . . . . . . . . . . . . . . . . . . 8

1.5 An example output of the sonography imaging method. Courtesy of

[Pat23] (shared under the Radiopaedia licence) . . . . . . . . . . . . . 9

1.6 An example of the insides of an X-ray machine. Courtesy of [Har24]

(shared freely for educational purposes) . . . . . . . . . . . . . . . . . 10

1.7 Image of the insides of a CT scanner with short descriptions. Courtesy

of HealthJade (shared freely for educational purposes) . . . . . . . . . 12

1.8 Example of how a CT scan and its 3D reconstructed result might look

like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 Pipeline of a CT image reconstruction. Courtesy of [Wei+20] (shared

under the CC BY 4.0 DEED licence) . . . . . . . . . . . . . . . . . . . 17

1.10 Example of a humeral head as a surface model (left) and its correspond-

ing wireframe (right) consisting only of triangles . . . . . . . . . . . . 18

1.11 Visualization of different mesh resolution (density) . . . . . . . . . . . 19

2.1 Example of a male model from the dataset A with (right) and without

(left) some of the landmarks visible (right, pink points). Landmark leg-

end: gt - greater tubercle, lt - lesser tubercle, hh - humeral head center,

mn - medial anatomical neck, pc - posterior capitulum, pt - posterior
trochlea, dt - distal trochlea, me - medial epicondyle . . . . . . . . . . 23

2.2 Set of male models from the dataset A before (left) and after (right) the

mesh alignment process . . . . . . . . . . . . . . . . . . . . . . . . . . 24

89

https://creativecommons.org/licenses/by/4.0/
https://www.pexels.com/license/
https://www.bgs.ac.uk/bgs-intellectual-property-rights/using-bgs-copyright-material/
https://radiopaedia.org/licence
https://healthjade.com/ct-scan/
https://creativecommons.org/licenses/by/4.0/


List of Figures

2.3 TheCPDalgorithm in rigid and non-rigid variants. Courtesy of [Myr10]

(shared freely under the IEEE license freely for thesis reuse; Copyright

©IEEE, 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 The BCPD algorithm. “ The tilde symbol attached to a matrix denotes

the Kronecker product between the matrix and 𝐼𝐷 , e.g.,
∑∼ =

∑ ⊕𝐼𝐷
and 𝑃∼ = 𝑃 ⊕ 𝐼𝐷 , whereas the tilde symbol attached to a vector denotes

the Kronecker product between the vector and 𝐼𝐷 , e.g., 𝑣
∼ = 𝑣 ⊕ 𝐼𝐷

and 𝑣∼
′
= 𝑣

′ ⊕ 𝐼𝐷 . The symbol 𝜓 represents the digamma function.

Themth diagonal element of

∑
is denoted by 𝜎 2𝑚. The singular value de-

composition is denoted by “svd”. The determinant and trace fo a square

matrix are denoted by |.| and 𝑇𝑟(.), respectively. Unlike CPD, BCPD
simultaneously estimates the variables of non-rigid and similarity trans-

formations. ”. Courtesy of [Hir21] (shared under the CC-BY 4.0 DEED

license) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 An example depicting advantages of the GBCPD algorithm compared

to the BCPD. “(a) Human body shapes to be registered. The shapes col-

ored black and blue are the source and target shapes, respectively. (b)

Registration of the body shapes using BCPD with a Gaussian kernel. (c)

Euclidean distance and geodesic distance between a pair of points, col-

ored blue and red, respectively. (d) Visualization of a Gaussian kernel.”.

Courtesy of [Hir22] (shared under the CC-BY 4.0 DEED license) . . . . 31

3.1 Subset of male humerus models from the dataset A imported into a 3D

scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Slicer user interface. In the center of the UI is the main 3D scene with

light blue background. The left side of the UI shows controls for the cur-

rently selected module. The top bar shows all of the available tools for

modifying the objects (also called nodes) present in the current scene.

On the bottom is a status bar showing the status of the last operation. In

the lower left corner is the Data Probe used for displaying information

about view content at the position of the mouse pointer. Source: https:

//slicer.readthedocs.io/en/latest/user guide/user interface.

html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Example of how a Slicer scene might look like . . . . . . . . . . . . . . 42

3.4 Slicer DeCA module main UI . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Slicer DeCA module Generate Mean tab . . . . . . . . . . . . . . . . . 46

3.6 General schema of scripted modules in Slicer . . . . . . . . . . . . . . 49

3.7 SlicerBoneMorphing UML diagram . . . . . . . . . . . . . . . . . . . 51

3.8 Main user interface of the SlicerBoneMorphing module . . . . . . . . 52

3.9 SlicerBoneMorphing UI input section . . . . . . . . . . . . . . . . . . 53

90

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://slicer.readthedocs.io/en/latest/user_guide/user_interface.html
https://slicer.readthedocs.io/en/latest/user_guide/user_interface.html
https://slicer.readthedocs.io/en/latest/user_guide/user_interface.html


List of Figures

4.1 Male statistical shape model created using the DeCA module with its

anatomical landmarks highlighted . . . . . . . . . . . . . . . . . . . . 58

4.2 Female statistical shape model created using the DeCA module with its

anatomical landmarks highlighted . . . . . . . . . . . . . . . . . . . . 59

4.3 An “ideal” testing scenario testing source models from different angles 60

4.4 An “ideal” testing scenario result model from different angles . . . . . 61

4.5 Testing model “O45_001_F_47_R_Humerus” with its cropped distal part 62

4.6 Result of the reconstruction of the model “O45_001_F_47_R_Humerus” 63

4.7 Example of an invalid rigid pre-alignment fit. Green model represents

the mean model whereas the red model represents the partial target

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Cropping of the “U35_008_F_22_R_Humerus”model (left) and its “closed-

up” version (center, right) . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Example of an improved rigid alignment after adjusting some of the

module’s parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 DeCA module file structure . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Slicer Additional module paths section . . . . . . . . . . . . . . . . . . 72

A.3 Slicer module list with DeCA installed . . . . . . . . . . . . . . . . . . 73

B.1 Slicer scene model list with the imported reconstructed model . . . . 78

91





List of Tables

1.1 Overviewof commonly usedmedical imagingmethods. Source:Healthcare Industry BW 13

93

https://www.gesundheitsindustrie-bw.de/en/article/dossier/imaging-methods-medical-diagnostics




List of Listings

2.1 Random sample consensus pseudocode . . . . . . . . . . . . . . . 32

C.1 Code snippet for mesh cropping . . . . . . . . . . . . . . . . . . . 79

D.1 Code snippet for mesh cropping and closing . . . . . . . . . . . . 81

95




	Intro
	Medical Imaging Methods
	Magnetic Resonance Imaging
	Sonography
	Radiography
	Computed Tomography

	Patient Model Reconstruction
	CT Image Reconstruction
	3D Model Rendering


	Humerus Surface Model Reconstruction Analysis
	Statistical Humerus Surface Model
	Statistical Shape Modelling

	Humerus Surface Model Reconstruction
	Iterative Closest Points
	Coherent Point Drift
	Bayesian Coherent Point Drift
	Geodesic-Based Coherent Point Drift
	Random Sample Consensus

	Previous Work on Humerus Reconstruction

	Implementation
	3D Slicer
	Source Datasets
	Statistical Shape Model Creation
	Model Landmarking
	Creating the Mean Model

	Module Implementation
	Reconstruction pipeline proposition
	Slicer Modules and Extendability
	Prerequisites
	File Structure
	Module Overview


	Results
	Mean Model Results
	Reconstruction Results

	Conclusion and Discussion
	DeCA Module Installation
	SlicerBoneMorphing User Manual
	Installation
	Module Description
	Input Section
	Preprocessing
	Reconstruction
	Postprocessing


	Mesh Cropping Script
	Mesh Cropping and Closing Script
	Bibliography
	List of Figures
	List of Tables
	List of Listings

